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We study micromotion in two-dimensional periodically driven systems in which all bulk Floquet
eigenstates are localized by disorder. We show that this micromotion gives rise to a quantized
time-averaged orbital magnetization density in any region completely filled with fermions. The
quantization of magnetization density has a topological origin, and reveals the physical nature of
the new phase identified in Phys. Rev. X 6, 021013 (2016). We thus establish that the topological
index of this phase can be accessed directly in bulk measurements, and propose an experimental
protocol to do so using interferometry in cold atom based realizations.

Periodic driving was recently introduced as a means
for achieving topological phenomena in a wide variety of
quantum systems. Beyond providing new ways to obtain
topologically nontrivial band structures [1–15], periodic
driving can give rise to wholly new types of topological
phenomena without analogues in equilibrium [16–32].

In a periodically driven system, the unitary Floquet
operator acts as a generator of discrete time evolution
over each full driving period. As in non-driven systems,
the spectrum and eigenstates of the Floquet operator can
be classified according to topology [2, 4, 16]. However, in
addition to the stroboscopic evolution of the system, the
micromotion that takes place within each driving period
is crucial for the topological classification of periodically
driven systems [17–21, 24–28].

Here we uncover a new type of topological quantization
phenomenon associated with the micromotion of period-
ically driven quantum systems. We focus on periodically
driven two-dimensional (2D) lattice systems in which all
bulk Floquet eigenstates are localized by disorder (see
Fig. 1). We show that, within a region where all states are
occupied, the time-averaged orbital magnetization den-
sity 〈〈m〉〉 is quantized: 〈〈m〉〉 = ν/T , where ν is an integer
and T is the driving period. The bulk observable 〈〈m〉〉
thus serves as a topological order parameter, characteriz-
ing the topologically distinct fully-localized phases found
in Ref. [22]. We propose a bulk interference measurement
to probe this invariant in cold atom systems.

Topological invariants are often associated with quan-
tized response functions. Famously, the Hall conductivity
of an insulator is proportional to the TKNN invariant,
or Chern number [33]. Interestingly, topology in driven
systems may directly give rise to quantization of time-
averaged observables, such as the pumped current in the
Thouless pump [34]. Similarly, the response of magneti-
zation density to changes of chemical potential in a quan-
tum Hall system is quantized when the chemical potential
lies in an energy gap [35–37]. In contrast, here we find
quantization of the magnetization density itself.

For concreteness, we consider a periodically-driven

FIG. 1. Quantized magnetization density in a two-
dimensional periodically driven system where all Floquet
eigenstates are localized. In a region where all sites are ini-
tially occupied (shaded area), the time-averaged orbital mag-
netization density 〈〈m〉〉 is quantized as ν/T , where ν is an
integer and T is the driving period. A quantized average cur-
rent 〈〈I〉〉 = ν/T runs along the edge of the filled region.

two-dimensional lattice model with one orbital per site.
Dynamics are governed by a time-periodic Hamiltonian
H(t) = H(t + T ), where T is the driving period.
The periodic driving gives rise to a unitary evolution
U(t) = T e−i

∫ t
0
dt′H(t′), where T denotes time ordering.

The spectrum of the Floquet operator U(T ), given by
U(T )|ψn(0)〉 = e−iεnT |ψn(0)〉, defines the Floquet eigen-
states {|ψn(t)〉} and their quasienergies {εn}.

We characterize micromotion in this system via the
orbital magnetization [39]

M(t) =
1

2
(r× ṙ(t)) · ẑ, (1)

where ṙ(t) = −i[r, H(t)]. The magnetization opera-
tor (1) is equivalently expressed as the response of the
Hamiltonian to an applied uniform magnetic field B:

M(t) = −∂H(t)
∂B [40]. In non-driven systems, the mag-

netization of a state hence determines the response of its
energy to the field: ∆E ∼ −M ·B. In periodically driven
systems, a similar relation holds between a Floquet eigen-
state’s time-averaged magnetization and the response of
its quasienergy to an applied magnetic field. We define
〈O〉τ ≡ 1

τ

∫ τ
0
dt 〈ψ(t)|O(t)|ψ(t)〉 as the time-averaged ex-

pectation value of an operator O(t) in the state |ψ(t)〉.
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The single-period averaged magnetization of a (localized)
Floquet eigenstate |ψn(t)〉 is given by [40, 42]:

〈M〉(n)
T ≡

1

T

∫ T

0

dt 〈ψn(t)|M(t)|ψn(t)〉 = −∂εn
∂B

. (2)

Using Eqs. (1) and (2), we may associate a net magne-
tization with a single particle in a localized Floquet eigen-
state. It is useful to define a local time-averaged magne-
tization density, associated with each plaquette p of the
lattice, that characterizes the response of quasienergy to
a magnetic flux φp applied locally through plaquette p.
We define the magnetization density operator as [43]:

mp(t) = −∂H(t)

∂φp
, φp =

∫
p

d2r B(r), (3)

where the integral is taken over the area of plaquette p.
The total time-averaged magnetization, 〈M〉τ , is given
by the sum of magnetization densities over all plaquettes:
〈M〉τ =

∑
p〈mp〉τa2, where a is the lattice constant.

The definition of magnetization density in Eq. (3) ap-
plies for both single particle and many-body systems. In
particular, for a (single or many particle) Floquet eigen-
state |ψ(t)〉 with quasienergy ε, the time-averaged mag-
netization density is given by 〈mp〉T = − ∂ε

∂φp
.

In the continuum, equilibrium magnetization density
is related to the current density j through Ampere’s law,
j = ∇×m. For a (stationary) system on the lattice, Am-
pere’s law relates the time-averaged magnetization densi-
ties on adjacent plaquettes p and q to the time-averaged
current 〈Ipq〉τ on the bond between them [40]:

〈Ipq〉τ = 〈mp〉τ − 〈mq〉τ . (4)

Here we take positive current to be counterclockwise with
respect to plaquette p.

Magnetization in finite droplets.— We now show that
the time-averaged magnetization density is quantized in
a finite “droplet,” where all states in a region of linear
dimension R are initially occupied while the surrounding
region is completely empty (Fig. 1). Specifically, we con-
sider the long-time average of the magnetization density
for a plaquette p deep inside the droplet, 〈〈mp〉〉, where
〈〈O〉〉 ≡ limτ→∞〈O〉τ . Below we show that 〈〈mp〉〉 takes
a constant value m̄∞, up to exponentially small correc-
tions [44]. We then show that m̄∞ is quantized.

Since all Floquet eigenstates are localized, the par-
ticle density will only evolve significantly in a strip of
width ξ around the boundary of the filled region, where
ξ is the single-particle localization length of the Floquet
eigenstates. Hence, the droplet retains its shape up to
a smearing of its boundary. At a distance d � ξ from
this boundary, the density change remains exponentially
small in d/ξ at any time. Within the droplet, all (time-
averaged) bond currents therefore vanish: 〈Ipq〉τ = 0 for
all τ . The magnetization density 〈〈mp〉〉 must therefore
be the same for all plaquettes deep within the droplet.

The uniform value of the magnetization density deep
within the droplet may depend on the droplet’s size. We
note that 〈〈mp〉〉 is given by the sum of magnetization
contributions from all occupied states that overlap with
plaquette p. Therefore, if the droplet size is increased
by adding a section of new (filled) sites in a region far
away from plaquette p, 〈〈mp〉〉 can only change by an
exponentially small amount due to the contributions of
the tails of the newly added localized states. Thus, for
a plaquette located a distance d from the boundary, we
obtain 〈〈mp〉〉 = m̄∞ +O(e−d/ξ), where m̄∞ is the value
in the thermodynamic limit. As we show below, m̄∞ is
quantized.

Interestingly, a nonzero value of m̄∞ implies that a cur-
rent circulates around the boundary of the droplet. The
magnetization density drops from the value m̄∞ to zero
over a distance of order ξ across the droplet’s boundary.
Using Amperes law (4), the total time-averaged current
〈〈I〉〉 passing through a cut through this strip (see Fig. 1)
is 〈〈I〉〉 = m̄∞ +O(e−R/ξ).

Quantization of magnetization density.— To prove the
quantization of m̄∞, we consider the total magnetiza-
tion 〈〈M〉〉 of a droplet of N particles. On one hand we

have 〈〈M〉〉 =
∑′
n 〈M〉

(n)
T +O(N1/2), where the sum runs

over single particle Floquet eigenstates |ψn〉 with cen-
ters localized within the perimeter of the droplet. The
O(N1/2) correction accounts for the partially-occupied
Floquet eigenstates near the droplet’s boundary. On
the other hand, since the magnetization density deep in-
side the droplet is constant and given by m̄∞, we have
〈〈M〉〉 = Na2m̄∞ +O(N1/2). Here Na2 is the total area
of the droplet, with the O(N1/2) correction capturing
the uncertainty of the area due to its fuzzy boundary. By
equating the expressions for 〈〈M〉〉 and taking the N →∞
limit, we identify

m̄∞ = lim
N→∞

1

Na2

∑
n

′
〈M〉(n)

T . (5)

The quantity 1
N

∑′
n 〈M〉

(n)
T is simply the average mag-

netization of Floquet eigenstates in the droplet; below,
we show that this average is quantized in large, fully-
localized systems. To do this, we explicitly compute the
average magnetization over all Floquet eigenstates for a
fully-localized system on a large torus of area A = L2a2,
where L2 is the number of sites.

For the system on a torus, we compute the time-

averaged magnetization 〈M〉(n)
T of each Floquet eigen-

state |ψn(t)〉 using Eq. (2). To use the form 〈M〉(n)
T =

−∂εn∂B , we must specify how the field B is introduced.
Crucially, on a torus, the net magnetic flux must be
an integer multiple of Φ0 (the flux quantum) [45]; con-
sequently, the strength of a uniform field cannot be
varied continuously. However, for ξ/L � 1, we may

use 〈M〉(n)
T = −∂εn∂B + O(e−L/ξ), where εn(B) is the
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quasienergy of state |ψn〉 in the presence of a locally uni-
form magnetic field, of strength B within the support
region of |ψn〉, but zero net flux through the torus. The
O(e−L/ξ) correction arises from the non-uniformity of the
field, which is concentrated where the wave function is
exponentially small.

To evaluate the average magnetization of localized Flo-

quet eigenstates, 1
L2

∑
n 〈M〉

(n)
T = − 1

L2

∑
n
∂εn
∂B , we ex-

amine the Floquet operator U(T ) in the presence of a
global uniform magnetic field of strength B0 = 2π/A,
corresponding to precisely one flux quantum piercing the
torus. For large A, the quasienergy in the uniform field
B0 is equal to that in the locally uniform field described
above (with B = B0), up to an exponentially small cor-
rection in L/ξ. Moreover, for small field strengths, ∂εn∂B is
well approximated by a finite difference, such that [46]:

〈M〉(n)
T = −[εn(B0)− εn(0)]/B0 +O(1/A). (6)

The O(1/A) correction accounts for the error in discretiz-
ing the derivative.

Using Eq. (6), we can access
∑
n 〈M〉

(n)
T directly via

the determinant of the system’s Floquet operator [21],

|U(T )|. Writing log |U(T )| =
∫ T

0
dt ∂t log |U(t)|, we use

the identity ∂t log |U(t)| = Tr
[
U†(t)∂tU(t)

]
, together

with ∂tU(t) = −iH(t)U(t), and find [47]

log |U(T )| = −i
∫ T

0

dtTr [H(t)] . (7)

When a magnetic field is introduced, the hopping am-
plitudes between sites of the lattice acquire additional
Peierl’s phases: Hab → Habe

iθab . In the position basis,
the magnetic field thus only affects the off-diagonal ele-
ments of the Hamiltonian, and we conclude that Tr[H(t)]
and hence |U(T )| are independent of magnetic field. Us-
ing |U(T )| = e−i

∑
n εnT , we find∑

n

εn(B0) =
∑
n

εn(0)− 2πν

T
, (8)

where ν is an integer.
Recall that m̄∞, the magnetization density in a filled

droplet is obtained from the average magnetization of
the Floquet eigenstates in the droplet, see Eq. (5). The
torus geometry discussed above allows us to compute this
average in the thermodynamic limit. Using Eqs. (6) and

(8) we obtain 1
L2

∑
n〈M〉

(n)
T = 2πν

L2B0T
[48]. Comparing

to Eq. (5), we find:

m̄∞ =
ν

T
. (9)

Remarkably, this quantization has a topological origin.
As we show in the SOM [40], the integer ν is equal to the
winding number invariant characterizing the Anomalous
Floquet-Anderson Insulator (AFAI) phase, introduced in

FIG. 2. Interferometric measurement of quantized orbital
magnetization density in a cold-atom system. a) The system
is prepared by filling a region of an optical lattice with spin-
1/2 atoms fully polarized along x. b,c) The system is evolved
with a spin-independent periodic driving Hamiltonian, plus
a weak spin-dependent uniform synthetic magnetic field. d)
The spin-dependent field gives rise to a phase-difference ∆φ
between the |↑〉 and |↓〉 components of each atom’s wave func-
tion. The phase shift yields a net y-polarization of total spin,
proportional to the system’s time-averaged magnetization.

Ref. [22]. The magnetization density thus serves as a
bulk topological order parameter that characterizes dis-
tinct fully-localized Floquet phases. Note that the emer-
gence of a non-zero, quantized magnetization density is
a unique dynamical phenomenon, with no counterpart in
non-driven systems: for static systems, Eq. (9) must hold
for all values of T , which requires ν = 0 [49].

Interferometric probe of quantized magnetization.—
We now outline an interferometric scheme for measur-
ing the spatially averaged magnetization density 〈〈m〉〉 =
〈〈M〉〉/Afilled of a cloud of fermionic cold atoms in an op-
tical lattice (see Fig. 2), where Afilled is the area of the
initially filled region. We thus offer a direct probe to
measure the bulk topological invariant of the AFAI.

Consider an atom traversing a closed trajectory in
the presence of a weak magnetic field B. Semiclassi-
cally, the wave-function picks up an additional phase
shift ∆φ = BAorb due to the field, where Aorb is the
area enclosed by the orbit [50]. Correspondingly, a sim-
ple quantum mechanical calculation [40] shows that the
phase shift acquired by an atom in Floquet eigenstate
|ψn(t)〉 over a full driving period is proportional to the

state’s magnetization, ∆φn = 〈M〉(n)
T BT.

Using this phase shift, the magnetization of a cloud of
atoms can be measured in a Ramsey-type interference ex-
periment in a situation where the atoms have two internal
(“spin”) states |↑〉 and |↓〉. First, the system should be
prepared by completely filling a region of known area,
Afilled, with atoms fully spin-polarized along the “x”-
direction, |ψ(0)〉 ∝ (|↑〉+ |↓〉)/

√
2, (Fig. 2a). The system

should then be evolved with the driving Hamiltonian to
allow the particle density to reach a steady profile [51],
as in Fig. 3a. To perform the measurement, the cloud
of atoms is then evolved through N driving periods in
the presence of a weak spin-dependent orbital effective
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FIG. 3. a) Particle density in the system after 20 driving
periods, for an initially filled 50× 50 square of sites. b) Nor-
malized growth rate ΩNT of the average y-spin per atom [see
text above Eq. (10)]. The long-time-averaged magnetization
density 〈〈m〉〉 is extracted from the saturation value at long
times. Inset: Deviation ∆Ω50T of Ω50T from the quantized
value m̄∞ vs. droplet size R. The value of ∆Ω50T is obtained
as an RMS average of Ω50T − m̄∞ over 100 disorder realiza-
tions. c) Depiction of the tight-binding model.

magnetic field B (Figs. 2bc), which, e.g., acts only on
the |↑〉 species. Through the evolution, the |↑〉 compo-
nent of each atom’s wave function gains a phase shift
relative to the |↓〉 component, yielding a nonzero average
y-spin per particle, 〈σy〉, (Fig. 2d). For small precession
angles, the average y-spin after N periods is given by
〈σy(NT )〉 ≡ ΩNTBa

2NT , with [40]

ΩNT = 〈〈m〉〉+
1

NT
O
(
ξ3/2

aR1/2

)
+O(B). (10)

Importantly, the second term vanishes in the long time
limit (and scales to zero at finite times for large systems),
thus revealing the quantized magnetization density [40].

Numerical results.— We simulated the experimental
protocol outlined above using a tight-binding model on
a two-dimensional bipartite square lattice, with Hamil-
tonian H(t) = Hclean(t) + Vdisorder. The Hamiltonian
Hclean(t) was considered in Ref. [17], and is of the form

Hclean(t) =
∑
r∈A

4∑
n=1

Jn(t)(c†r+bn
cr + h.c.), (11)

where cr is the fermionic annihilation operator on the
lattice site with coordinate r, and the first sum runs over
sites r on sublattice A. The vectors {bn} are given by
b1 = −b3 = (a, 0) and b2 = −b4 = (0, a), where a is the
lattice constant. The driving period is divided into five
segments of equal length T/5. In the nth segment (n ≤
4), Jn(t) = J , while all other hopping amplitudes are set
to zero; in the 5th segment all hopping amplitudes are
set to zero (see Fig. 3c). We introduce disorder through a
time-independent potential Vdisorder =

∑
r wrc

†
rcr, where

the sum runs over all sites, and the on-site energies {wr}
are randomly drawn from a uniform distribution in the
interval [−W,W ]. The model has hopping amplitude J
and disorder strength W both set to 2.5π/T . This brings
the system well into the AFAI phase, for which we expect
m̄∞ = 1/T [40].

To find the magnetization density of the system, we
consider a single disorder realization on a lattice of 80×80
sites and open boundary conditions. We initially fill a re-
gion of 50× 50 sites (i.e., R = 50) centered in the middle
of the lattice, and prepare the state by evolving it for 20
driving periods at zero magnetic field (see Fig. 3a). For
further times ranging from 0 to 50T we evolve the sys-
tem in the presence of a spin-dependent magnetic field
of strength Ba2 = 2π · 10−4. We extract the spatially
averaged magnetization density 〈〈m〉〉 from the long-time
limit of the normalized growth rate ΩNT of average y-
spin per atom, 〈σy(NT )〉. ΩNT rapidly converges (up to
a finite-size correction) to the quantized value of the mag-
netization density, 1/T , reaching 0.9998 after 100 periods
(see Fig. 3b and SOM). The inset in Fig. 3b shows the de-
viation of Ω50T from the quantized value m̄∞ = 1/T for
various sizes of the droplet, taken as a root-mean-square
average over 100 disorder realizations at each system size.
We find a power law decay of the fluctuations with sys-
tem size, ∆Ω50T ∼ R−0.55.

Discussion.— Here we showed that the orbital mag-
netization density is quantized in fully-filled regions of
localized Floquet systems. We then proposed an exper-
imental scheme for measuring the quantized magnetiza-
tion density in cold atomic systems.

We derived the quantization of magnetization density
within a tight-binding model with one (s-type) orbital
per site. This means that each on-site orbital does not
carry any intrinsic magnetization. In the continuum,
small non-quantized contributions to the magnetization
density may arise due to mixing with higher bands. Such
contributions are strongly suppressed when the driving is
adiabatic with respect to the gap to higher bands, and
the lattice is very deep such that the gap is large com-
pared to the bandwidth [40].

It is natural to expect that our results will hold also
in the presence of interactions, given that the system is
strongly disordered and hence may be many-body local-
ized. Recently, progress has been made in constructing
interacting analogues of the AFAI [52, 53]. The fate of
the magnetization in the presence of interactions remains
an open direction of investigation.
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