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We propose and analyze a method to engineer effective interactions in an ensemble of d-level
systems (qudits) driven by global control fields. In particular, we present (i) a necessary and
sufficient condition under which a given interaction can be decoupled, (ii) the existence of a universal
sequence that decouples any (cancellable) interaction, and (iii) an efficient algorithm to engineer a
target Hamiltonian from an initial Hamiltonian (if possible). We illustrate the potential of this
method with two examples. Specifically, we present a 6-pulse sequence that decouples effective
spin-1 dipolar interactions and demonstrate that a spin-1 Ising chain can be engineered to study
transitions among three distinct symmetry protected topological phases. Our work enables new
approaches for the realization of both many-body quantum memories and programmable analog
quantum simulators using existing experimental platforms.

The controlled manipulation of quantum systems with
pulsed coherent fields is important in nearly all branches
of quantum science. The techniques associated with dy-
namical coherent control have a long and storied his-
tory, originating in nuclear magnetic resonance (NMR),
where periodic sequences of control pulses enable the
isolation of nuclear spins from unwanted external noise
sources [1]. Over the past few decades, advanced tech-
niques have been developed with goals ranging from
frequency-selective decoupling to higher-order error sup-
pression, and applications ranging from metrology to in-
formation processing [2–13].

Periodic control pulses can also be used to engineer
many-body interactions. In particular, they can en-
able the realization of driven (Floquet) systems that ex-
hibit phenomena richer than the original system with-
out dynamical control [14–20]. This approach falls under
the moniker of average Hamiltonian theory [21], a term
prevalent in the context of solid-state NMR, where se-
quences of spin-rotations are used to modify the intrinsic
interactions between magnetic dipoles [21, 22]. A par-
ticularly powerful example is the celebrated WAHUHA
pulse sequence [22] which cancels the dipole-dipole inter-
action between spin-1/2 particles and has been exten-
sively utilized in systems ranging from solid-state spin de-
fects to ultracold polar molecules [7, 23]. More generally,
pulsed periodic driving has enabled the experimental ex-
ploration of a variety of exotic many-body quantum phe-
nomena including: dynamical phase transitions, quan-
tum chaos, glassy dynamics in disordered systems, and
discrete time-crystalline order [24–28]. While the major-
ity of existing pulse sequences are designed to engineer
Hamiltonians constructed from spin-1/2 or qubit-like sys-
tems [29–32], recent experimental progress has opened
the door to the manipulation of many-body qudit sys-
tems, whose basic degrees of freedom possess d inter-
nal states. Indeed, in platforms ranging from trapped
ions and Rydberg atoms to superconducting qubits and
solid-state spin defects, coherent interactions among mul-

tiple qudits have already been observed [23, 28, 33]. This
enables the study of quantum many-body qudit sys-
tems that can exhibit phenomena qualitatively distinct
from their spin-1/2 counterparts, such as generalized
Potts model and parafermionic topological phases [34–
37]. Generalizing Hamiltonian engineering methods to
qudit systems may enable exploration of such unique phe-
nomena with important potential applications in areas
such as quantum simulations.

In this Letter, we report two advances toward this
goal. First, we present a complete generalization of the
WAHUHA pulse sequence for an arbitrary qudit system.
We derive a necessary and sufficient condition that diag-
noses when generic interactions can be cancelled. More-
over, we prove the existence of a universal pulse sequence
that decouples any cancelable interaction. This result im-
plies that locally encoded quantum information can be
protected even in a strongly interacting qudit ensemble.
As an example, we present a novel pulse sequence that
decouples spin-1 dipolar interactions. Second, we present
an algorithm that determines when a given initial Hamil-
tonian H0 can be mapped to a desired final Hamiltonian
Hf , using a predetermined set of global pulses. Such a
technique provides a recipe to transform an interacting
many-body system into a programmable analog quan-
tum simulator [32]. In this context, we demonstrate that
a spin-1 classical Ising chain can be directly mapped to
a family of Hamiltonians whose ground states include a
variety of symmetry protected topological (SPT) phases.
In both cases, we consider an ensemble of d-level systems
with generic pairwise interactions and assume that only
global SU(d) manipulations are available. This setting is
ubiquitous and particularly relevant to recent experimen-
tal developments in a variety of platforms [23–28, 38–41].
We note that in the case where qudits can be indepen-
dently addressed and controlled, arbitrary modifications
of the underlying interactions are possible [31, 32, 42–
44]; however, such precise individual controls are typ-
ically challenging to implement in strongly interacting
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many-body systems.
We consider an N qudit system with Hamiltonian,

H =
∑
ij

Jijhij , (1)

where hij represents a homogeneous two-qudit interac-
tion between i and j, and the scalars Jij fully character-
ize the geometry, range and strength of the interactions.
Hamiltonian evolution is interspersed with a rapid and
repeated sequence of k pulses, denoted Pi. More specif-
ically, each pulse is followed by free evolution under H
for a duration τi. Assuming that the manipulations are
sufficiently fast, one can rewrite the (Floquet) unitary
evolution over one such k-cycle as,

U(T ) = e−iHτkPk . . . e
−iHτ2P2e

−iHτ1P1, (2)

where T =
∑k
i=1 τi is the total time duration of the cycle.

At integer multiples of the driving period T , the time
evolution is captured by an effective Hamiltonian Heff,
defined by U(T ) = exp (−iHeffT ).

In the case of both dynamical decoupling and Hamilto-
nian engineering, the key idea is to design a finite pulse
sequence such that Heff approximates a desired target
Hamiltonian. Defining Ui ≡ PiPi−1 . . . P2P1 and U0 ≡ I,
one can rewrite Eq. (2) as

U(T ) = e−iH̄kτk . . . e−iH̄2τ2e−iH̄1τ1 , (3)

where H̄i =U†iHUi [45]. By moving into this so-called
toggling frame [21], the pulsed unitary dynamics [Eq. (2)]
can be described by continuous evolution under a time-
dependent Hamiltonian. Recently, it has been shown
that Heff can be approximated by a controlled Magnus
expansion in the high frequency limit, leading to an ef-
fective Hamiltonian description valid up to exponentially
long times [46–49]. In particular, for a driving frequency,
ω= 2π/T , that is large compared to local energy scales

∼ J , Heff '
∑q∗
q=0(J/ω)qH

(q)
eff , where H

(q)
eff denotes the

q-th order term while q∗ is the maximum order beyond
which heating effects become non-negligible. Here, we as-
sume a rapid pulse sequence satisfying ω � J and focus
on the leading order effective Hamiltonian,

Heff ≈ H(0)
eff =

∑
i

τi
T
H̄i. (4)

Once a desired pulse sequence is found, one can always

symmetrize it such that the next order correction H
(1)
eff

also vanishes, leaving only a strongly suppressed sec-
ond order (q≥ 2) contribution [50]. From the linearity
of Eq. (4), we only need to consider a single term hij and
hence omit the qudit indices below.

Consistent with the control available in many-body qu-
dit systems, we focus on the case where one can only ap-
ply global single-qudit rotations, i.e., Pi = p⊗Ni for some

pi ∈SU(d). To represent the interactions, we use a trace
orthonormal operator basis {λµ} with tr [λµλν ] = 2δµν .
In this basis, the most general two-qudit interaction can
be written as

h =
∑
µν

Cµνλµ ⊗ λν . (5)

Hermiticity and the exchange symmetry imply that C is
a real symmetric m ×m matrix with m= d2− 1. For a
given h, the matrix C can be explicitly obtained using
Cµν = tr [hλµ ⊗ λν ] /4.

Interaction Decoupling.—We now derive a necessary
and sufficient condition for the full decoupling of an in-
teracting qudit Hamiltonian.

Theorem 1. For a given two-qudit interaction h,
there exists a finite sequence {pi}⊂SU(d), or equiva-
lently {ui}⊂SU(d), and {τi}⊂R+, such that heff =∑
i
τi
T (u†i ⊗ u

†
i )h(ui ⊗ ui) = 0 if and only if the C matrix

of h is traceless, i.e. tr [C] =
∑
µ tr [hλµ ⊗ λµ] /4 = 0.

Proof. For convenience we work with interactions rep-
resented as C matrices, whose transformation under a
unitary rotation ui ⊗ ui is given by,∑

µν

Cµνλµ ⊗ λν 7→
∑
µν

Cµν

(
u†iλµui

)
⊗
(
u†iλνui

)
(6)

≡
∑
µν

C(i)
µνλµ ⊗ λν , (7)

where the coefficients C
(i)
µν are defined by the equality

above. More specifically, two matrices C(i) and C are

related by the transformation C(i) =
(
Oi
)T
COi, where

Oiν′ν ≡ 1
2 tr
[
λνu

†
iλν′ui

]
. Taking into account the full se-

quence of unitary pulses yields the C matrix for the ef-
fective Hamiltonian as,

Ceff =
∑
i

αi
(
Oi
)T
COi. (8)

where αi = τi/T characterizes the relative timescale of
the various intermediary free evolutions. Intuitively,
Eq. (8) demonstrates that the effective interaction is sim-
ply given by a weighted average of “rotated” versions of
the original interaction. Indeed, it can be easily shown
that Oi is a real orthogonal matrix.

First, one immediately sees that the trace of C is pre-
served. Thus, it is necessary for the original C matrix
to be traceless in order for the effective Hamiltonian to
be fully decoupled. Second, this also naturally suggests
a decomposition of a general interaction into two compo-
nents: an isotropic part with non-zero trace and a trace-
less anisotropic part. Since C is a real-symmetric matrix,
there exists only one linearly independent isotropic com-
ponent, which is proportional to the identity matrix. The
corresponding two-qudit interaction is hiso∝

∑
µ λµ⊗λµ.
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Eq. (8) shows that any isotropic interaction cannot be
modified by global pulses as it is invariant under SU(d)
rotations.

To prove sufficiency, we construct a pulse sequence that
explicitly cancels any interaction (Ceff = 0) given that the
interaction is purely anisotropic. The design principle
of this “universal decoupling” sequence is simple: find
a finite set of {ui}, where the corresponding {Oi} are
distributed among all possible rotations such that their
weighted average vanishes; this strategy is reminiscent
of unitary 2−designs, but here, we have one additional
control knob, corresponding to the choices of αi. Inter-
estingly, a very related problem has been already studied
in quantum information science. In Ref. [51], Dür et al
introduce a depolarization superoperator D that acts on
a density matrix ρ of a two-qudit system

D(ρ) = Ad
tr [Adρ]

tr [Ad]
+ Sd

tr [Sdρ]

tr [Sd]
, (9)

where Sd(Ad) is the projector onto even(odd) eigenspace

of the exchange operator Πd =
∑d
i,j=1 |ij〉 〈ji|, i.e.,

Ad = (I − Πd)/2 and Sd = 1 − Ad = (I + Πd)/2. It is
shown, by explicit construction, that D(·) can be im-
plemented by a finite sequence of probabilistic bilocal

operations,
∑k
i=1 pi

(
v†i ⊗ v

†
i

)
ρ (vi ⊗ vi) =D(ρ), where

{pi} is a probability distribution and {vi}⊂SU(d).
Here, we re-interpret the super-operator as dynami-
cal decoupling sequence via the mapping: pi→αi and
vi→ui. To show that this is a universal decoupling se-
quence, we demonstrate that for an arbitrary interac-
tion h, tr [Sdh] =−tr [Adh] = tr [C]; thus, tr [C] = 0 im-
plies D(h) = 0. The proof is simple: for h acting on qudits
A and B,

tr [hΠd] =
∑
µνij

Cµνtr
[
λAµ ⊗ λBν |ij〉 〈ji|

]
(10)

=
∑
µνij

Cµν 〈jA|λAµ |iA〉 〈iB |λBν |jB〉 (11)

=
∑
µν

Cµνtr [λµλν ] = 2tr [C] , (12)

where we have explicitly dropped the qudit in-
dices and the tensor product [Eq. (12)] to em-
phasize that λµ(ν) are matrices. Finally, not-

ing that tr [h] =
∑
µν tr

[
λAµ ⊗ λBν

]
= 0, we obtain

tr [Sdh] =−tr [Adh] = tr [hΠd] /2 = tr [C], which com-
pletes the proof of Theorem 1.

Hamiltonian Engineering.—The previous case of inter-
action decoupling can be viewed as a specific example of
a more general question: given an initial set of inter-
actions h0, a target Hamiltonian hf and a finite set of
available unitaries U , is there a pulse sequence such that,∑
i
τi
T (u†i ⊗ u

†
i )h0(ui ⊗ ui) =βhf for a constant β > 0? If

(a) (b)Purely anisotropic

Target

Source 

Pulse
sequence

Isotropic + anisotropic

Pulse
sequence
(engineer)

Source 

Isotropic Anisotropic

Isotropic Anisotropic Target

Pulse
sequence
(decouple)

FIG. 1. Schematic diagram of interaction engineering. Black
solid, red dotted, and blue dashed lines indicate full inter-
actions, isotropic components and anisotropic components,
respectively. Dotted arrows represent applications of dynam-
ical decoupling sequence. (a) When both source and tar-
get interactions are purely anisotropic (s0 = sf = 0), one
directly maps interactions. (b) For interactions with both
isotropic and anisotropic components, one engineers only the
anisotropic component and matches the relative strength by
canceling some fraction.

so, is there an efficient algorithm to construct the de-
sired pulse sequence? In what follows we describe such
an algorithm.

Let us begin by rewriting h0 and hf in their cor-
responding C matrices C0 and Cf . We denote the
strengths of their isotropic components as s0 = tr [C0]
and sf = tr [Cf ]. As previously discussed, if only one of
their C is traceless, h0 cannot be mapped to hf since
the isotropic components can never be decoupled by any
pulse sequence. We will now divide our analysis into two
cases: (i) s0 = sf = 0 and (ii) s0, sf 6= 0 (Fig. 1).

Case (i) [Fig. 1(a)]: Our strategy is to cancel the por-
tion of the interaction that is orthogonal to Cf while
maximizing the strength of the remaining piece. To il-
lustrate this idea more clearly, we introduce a vector rep-
resentation of interactions

(~w)a ≡ tr [Cηa] /2, (13)

using a matrix basis {ηa} of dimension m= d2−1. In this
representation, Eq. (8) becomes ~weff =

∑
i αiM

i ~w with

M i
ab ≡ 1

2 tr
[
ηa
(
Oi
)T
ηbO

i
]
. Our objective is to max-

imize ~weff · ~wf while satisfying ~weff · P⊥= 0, where ~wq
(q ∈ {0, f}) is the vector representation of Cq and P⊥ is
the projector on to a space that is orthogonal to ~wf , i.e.,
(P⊥)ab = δab − (~wf )a(~wf )b/|~wf |2. Interestingly, this task
can naturally be cast into the canonical form of Linear
Programming, i.e. maximize

∑
i αi ~wf ·M i ~w0 with respect

to {αi} under constraints
∑
αiP⊥M

i ~w0 = 0,
∑
αi = 1,

and αi ≥ 0 [52].
Case (ii) [Fig. 1(b)]: In this case, the contributions

from the isotropic components cannot be ignored, and
they fix the rescaling parameter, β= s0/sf . Thus, one
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has to not only engineer the “shape” of the anisotropic
interaction but also adjust its strength to match with the
fixed β. Now our strategy is to decompose the given in-
teraction into three pieces: an isotropic part, a fraction
of the anisotropic part to be modified, and the remain-
ing portion to be cancelled. To this end, one is searching
for two pulse sequences, P1 = ({τ1

i }, {u1
i }), which maps

C̄0 7→ β∗C̄f and P2 = ({τ2
i }, {u2

i }), which cancels C̄0 7→
0. Here, C̄q (q ∈ {0, f}) is the anisotropic component of
Cq and β∗ is the maximum possible strength. As before,
one can use linear programming to efficiently find these
sequences. If both maps are possible and the engineered
interaction strength is sufficiently strong β∗≥β, one can
concatenate two sequences to form P3 = ({(β/β∗)τ1

i , (1−
β/β∗)τ2

i }, {u1
i , u

2
i }), which maps C0 7→ βCf .

Decoupling spin-1 dipolar interactions.—We now turn
to two examples. First, we present a 6-pulse se-
quence that decouples effective dipole-dipole interactions
Hd =

∑
Jijh

d
ij in an ensemble of spin-1 particles (states

{|±1〉 , |0〉}) with anharmonic level spacings [38],

hd =

2∑
a=1

(Xa ⊗Xa + Ya ⊗ Ya)− (Z1 + Z2)⊗ (Z1 + Z2),

(14)

whereXa,Ya, andZa are Pauli matrices associated
with two different transitions, |0〉↔ |+1〉 (a= 1) and
|0〉↔ |−1〉 (a= 2), of a single spin-1 particle [see
Fig. 2(a)] [50]. Such a Hamiltonian is ubiquitous in
quantum optical systems and arises in the context of
ultracold polar molecules, NV centers, and quadrupolar
nuclear spins [11, 23, 28]. While the solution for the
analogous question in dipolar spin-1/2 systems has been
known for a half-century (e.g. WAHUHA), the spin-1
problem remains an open question.

Motivated by typical experimental constraints, we as-
sume that the available manipulations are limited to a
set of composite pulses constructed from up to four ±π
or ±π2 -pulses between any of the three transitions with
two different phases [Fig. 2(a)]. Using a linear program-
ming algorithm, we find an explicit decoupling sequence
using only 6 pulses {P1, . . . P6} with equal time durations
τi =T/6 as depicted in Fig. 2(b). Explicit expressions for
these pulses are provided in Supplementary Material [50].
In order to test our sequence, we simulate the dynamics of
N = 6 spin-1 particles with random interaction strengths
Jij ∈ [−J, J ] between every pair. We compute the Flo-
quet unitary UT ≡P6e

−iHdT/6P5 . . . P1e
−iHdT/6 and gen-

erate stroboscopic time evolution via (UT )n with n ∈
Z. We introduce the fidelity F(nT )≡ |tr ((UT )n) /D|2,
where D= 3N is the dimension of the Hilbert space.
Since F(t) = 1 if and only if the evolution corresponds
to the identity, the decay of F serves as a conservative
measure for the performance of our decoupling sequence.

Figure 2(c) depicts F(t) for various values of T ,
demonstrating that the evolution remains trivial up to
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II III

0

0.2

0.4

0.6

0.8

1.0

101 102 103

(c)

Time
Pulse phase

(b)

6-pulse cycle

FIG. 2. (a) Level diagram for an anharmonic three level
system. (b) Decoupling sequence for spin-1 dipolar inter-
actions. Pulse durations are indicated by rotation angles,
and phase choices are color-coded. (c) Numerical simula-
tions of decoupling dipolar interactions among N = 6 spin-1
particles. Black solid line indicates F(t) in the absence of
pulse sequence. Blue, red, and yellow solid lines correspond
to F(t) under a decoupling sequence with 1/JT = 3, 5, 10, re-
spectively. Dashed lines are for symmetrized sequences. (d)
Two generators {a, x} of the symmetry group A4. (e) Phase
diagram. Three SPT phases (I, II, and III) are distinguished
by the transformation of ground state wavefunctions under
the action of a ∈ A4. The colored area indicates the domain
of (p, q) that can be engineered from Ising interactions. Blue
dot indicates the AKLT point (p, q) = (1/3, 0).

∼ 10/J for JT < 1. Once a given decoupling sequence is
found, one can always symmetrize it to further suppress
the leading order correction in Magnus expansion [50]. In
our case, such a sequence involves 10 pulses within the pe-
riod 2T . As shown in Fig. 2(c), the symmetrized sequence
significantly suppresses the interaction for timescales up
to ∼ 100/J .

Engineering SPT Hamiltonians.—As a second exam-
ple, we show that a spin-1 chain with nearest neighbor
Ising interactions can be directly mapped to a family
of SPT Hamiltonians [50]. More specifically, given a ba-
sic Ising interaction HI =

∑
i S

z
i S

z
i+1, one can engineer

a two-parameter family of Hamiltonians H(p, q) =H1 +
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pH2 + qH3 with

H1 =
∑
i

~Si · ~Si+1, H2 =
∑
i

(~Si · ~Si+1)2,

H3 =
∑
i

∑
(a,b,c)∈S3

(Sai S
b
iS

c
i+1 + Sai S

b
i+1S

c
i+1),

where p, q ∈ R, ~Si = (Sxi , S
y
i , S

z
i ) is the spin-1 vector op-

erator, and
∑

(a,b,c)∈S3
indicates the summation over all

permutations of (x, y, z). The symmetries of the Hamil-
tonian include lattice translation, the bond-centered in-
version, and a global internal symmetry A4, which is the
symmetry group of a tetrahedron [see Fig. 2(d)]. All pos-
sible SPT phases protected by these symmetries are ex-
plicitly enumerated in Ref. [53].

When p= 1/3 and q= 0, the Hamiltonian reduces to
celebrated Affleck-Kennedy-Lieb-Tasaki (AKLT) model,
whose ground state is exactly solvable and exhibits non-
trivial topological edge degrees of freedom [54]. As (p, q)
deviates from this solvable point, phase transitions arise
among three distinct regions, I, II, and III, as indicated in
the numerically obtained phase diagram in Fig. 2(e) [50].
The ground states in the three phases respect all the sym-
metries while they are distinguished by the complex U(1)
phase that the state picks upon a 120◦ rotation a∈A4 of
underlying spins [50]. Using our algorithm, we find that
H(p, q) with 2|q| ≤ p≤ 2 − 2|q| can be engineered from
HI [Fig. 2(e)]. The strength of H(p, q) is set to 1/(3 + p)
by isotropic components, and the range of (p, q) is lim-
ited by the maximum possible strength of the engineered
anisotropic components [50].

Discussions.— We now consider the dominant oper-
ational imperfections which may arise during our pro-
tocol. First, periodic driving pulses may cause heat-
ing in the many-body system, eventually leading to a
featureless infinite temperature state [55–57]. As dis-
cussed earlier, such energy absorption is irrelevant un-
til exponentially long times t∗∼ exp [O(1/J̄T )], where
J̄ ≡maxi,j Jij ||hij ||. A second natural concern is that our
method is based upon engineering the low order Magnus

Hamiltonian H
(0)
eff , which provides only an approximate

description of the full many-body dynamics. However,
for gapped Hamiltonians, higher order terms are strongly
suppressed so long as J̄T � 1, and the phase should re-
main stable. Third, in the presence of weak coupling to a
bath, our protocol can enhance qudit sensitivity to exter-
nal noise at harmonics of 1/T [6, 10, 13]. However, this
extra sensitivity can be mitigated if the control pulses are
significantly faster than the bandwidth of noise spectrum.
In a similar vein, the limited strength of control pulses
also imposes additional practical constraints for any ex-
perimental implementation; in certain cases, further nu-
merical optimization may help to solve these practical
issues [2, 8, 12].

Interestingly, the decoupling of interactions may re-
sult in dynamical quantum phase transitions for isolated,

weakly disordered systems [58]. In such cases, the inter-
play of weak disorder, suppressed interactions, and an
exponentially slow heating rate can lead to many-body
localization, where initial state memories survive for ex-
tremely long times. Harnessing these effects may enable
the coherent manipulation and storage of quantum infor-
mation in an interacting many-body system [59, 60].
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