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Searches for invisible Higgs decays at the Large Hadron Collider constrain dark matter Higgs-
portal models, where dark matter interacts with the Standard Model fields via the Higgs boson.
While these searches complement dark matter direct-detection experiments, a comparison of the two
limits depends on the Higgs coupling to the nucleons forming the direct-detection nuclear target,
typically parameterized in a single quantity fN . We evaluate fN using recent phenomenological and
lattice-QCD calculations, and include for the first time the coupling of the Higgs to two nucleons
via pion-exchange currents. We observe a partial cancellation for Higgs-portal models that makes
the two-nucleon contribution anomalously small. Our results, summarized as fN = 0.308(18),
show that the uncertainty of the Higgs–nucleon coupling has been vastly overestimated in the past.
The improved limits highlight that state-of-the-art nuclear physics input is key to fully exploiting
experimental searches.
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INTRODUCTION

After the initial discovery of a new particle by the AT-
LAS and CMS collaborations at the Large Hadron Col-
lider (LHC) in 2012 [1, 2], its mass has been further con-
strained to sub-GeV accuracy, mh = 125.09(24)GeV [3],
and so far neither studies of its spin and parity [4, 5] nor
its branching fractions [6] have revealed significant devi-
ations from the Standard Model (SM) prediction for the
Higgs boson h. An interesting consequence is that events
with large missing transverse momentum would be ex-
pected if the Higgs decayed to long-lived non-SM states
that do not leave a signature in the detector, so-called
invisible Higgs decays. The absence of such observations
sets limits on the invisible decay channels [7–13], which
provide stringent constraints on beyond-SM physics.

One particular example concerns Higgs-portal models
for dark matter, see, e.g., [14–17], in which the dark-
matter candidate χ, a weakly interacting massive parti-
cle (WIMP), interacts with the SM fields via the Higgs.
With the nature of dark matter still a major puzzle, the
quest to understand its composition is being vigorously
pursued, besides collider signatures, in direct-detection
experiments looking for the WIMP scattering off atomic
nuclei, as well as indirect searches [18]. As long as the
WIMP mass fulfills mχ < mh/2, limits on the invisible
decay width of the Higgs are in a one-to-one correspon-
dence with direct-detection limits on the WIMP–nucleon
cross section σχN , provided the nuclear physics input is
sufficiently under control.

Such comparison relies on the coupling of the Higgs to
a single nucleon, which proceeds via the nucleon matrix

elements for the scalar current

mNfN
q = 〈N |mq q̄q|N〉 (1)

for the light quarks q = u, d, s (with quark masses mq

and nucleon mass mN ), as well as through heavy-quark
loops coupling to gluon fields, see Fig. 1. Integrating out
the heavy quarks at leading order in the strong coupling
constant αs leads to an effective coupling [19]

fN =
∑

q=u,d,s,c,b,t

fN
q =

2

9
+

7

9

∑

q=u,d,s

fN
q (2)

to describe the Higgs–nucleon interaction. Both re-
cent LHC analyses constraining Higgs-portal dark mat-
ter from invisible Higgs decays [12, 13] use a central
value fN = 0.326 [20] with variations covering fN =
0.260 . . .0.629 (motivated by [21], see [15]; see also [22]).
Given recent progress in lattice-QCD calculations [23–
26] and pion–nucleon (πN) phenomenology [27–30], this
large range in fN no longer reflects the current knowl-
edge of the scalar couplings of the nucleon. Consequently,
the limits for σχN derived from the searches for invisible
Higgs decays can be significantly improved. In the first
part of this paper, we provide a more detailed assessment
of the current situation, including corrections to Eq. (2)
regarding isospin violation and higher orders in αs for
the heavy-quark loops.
In addition, the standard decomposition (2) does not

reflect that atomic nuclei are strongly interacting many-
nucleon systems, so that not only the one-body (single-
nucleon) matrix elements enter. As first pointed out
in [31], corrections to this picture from two-body cur-
rents, where the Higgs couples to a pion exchanged be-
tween two nucleons, can become important. Such cor-
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FIG. 1: Higgs-mediated interaction of the WIMP χ with the
light quarks q = u, d, s (left) and the gluon field g by closing
a heavy-quark loop Q = c, b, t (right).

rections are conveniently addressed within chiral effec-
tive field theory (EFT) [32, 33], an expansion around
the chiral limit of QCD in terms of momenta and quark
masses, as successfully demonstrated in previous applica-
tions to WIMP–nucleus scattering [34–41] (related work
using chiral EFT for WIMP–nucleon interactions [39] is
restricted to the coupling to a single nucleon [42, 43] or
focuses on the calculation of the nuclear states based on
chiral EFT forces [44]). In this work, we extend previ-
ous calculations limited to xenon [40] to a broad range of
target nuclei and show that the corrections from the cou-
pling to two nucleons are largely coherent and can thus
be absorbed into a redefinition of the single-nucleon fN .
The combination of the one- and two-body contributions
to fN then allows us to compare the limits on Higgs-
portal models from collider and direct-detection experi-
ments using state-of-the-art nuclear physics input.

SCALAR COUPLINGS OF THE NUCLEON

The evaluation of the quark-level operators from Fig. 1
between nucleon states requires knowledge of the scalar
couplings defined in Eq. (1). To arrive at Eq. (2), the cou-
plings fQ of the heavy quarks Q = c, b, t are eliminated
in favor of the light quarks’ according to the following
procedure [19]: at O(αs), the QCD trace anomaly for Nf

active degrees of freedom reads

θµµ =

Nf
∑

i=1

mqi q̄iqi −

(

11−
2Nf

3

)

αs

8π
Ga

µνG
µν
a , (3)

with gluon field-strength tensor Ga
µν . Integrating out the

heavy quarks then yields for each flavor

mNfN
Q = 〈N |mQQ̄Q|N〉 = −

αs

12π
〈N |Ga

µνG
µν
a |N〉

=
2

27

(

〈N |θµµ|N〉 −
∑

q=u,d,s

〈N |mq q̄q|N〉

)

, (4)

so that

fN
Q =

2

27

(

1−
∑

q=u,d,s

fN
q

)

+O(αs) (5)

and Eq. (2) follows.

Modifications of the leading result (2) arise from two
sources: isospin-breaking and perturbative corrections.
For u- and d-quarks the dominant isospin-breaking effects
cancel in the sum fN

u + fN
d , with remaining effects of the

size [45]

fp − fn =
(mp −mn)

str

mN

, (6)

where (mp − mn)
str denotes the portion of the proton–

neutron mass difference proportional to md − mu. In a
nucleus, this would lead to a relative correction

∆f IV
N

fN
=

Z −N

A

fp − fn
2fN

<
∼ 0.1%, (7)

where Z/N refer to proton/neutron number, A = Z+N ,
and we have inserted values for a typical Xe isotope.
Thus, isospin-violating effects in fN are small [46] and
will be neglected in the following. The perturbative cor-
rections have been worked out in detail in [47]. Here, we
use the full result for the c quark

fN
c = 0.083− 0.103

∑

q=u,d,s

fN
q +O

(

α4
s,m

−1
c

)

, (8)

as well as the O(αs) correction for q = b, t.
In this way, we are left with the determination of the

scalar couplings of the light quarks in the isospin limit.
In general, these couplings cannot be measured in ex-
periment due to the absence of a scalar source, leav-
ing lattice QCD as the only viable option. However, an
important exception concerns the scalar couplings of u-
and d-quarks, which the Cheng–Dashen low-energy the-
orem [48, 49] relates to the πN scattering amplitude, of-
fering a unique opportunity to test the results of lattice-
QCD calculations with experiment. More precisely, the
low-energy theorem allows one to extract the πN σ-term
σπN = mN (fN

u + fN
d ) from the isoscalar amplitude eval-

uated at a particular kinematic point in the subthreshold
region. The required analytic continuation can be per-
formed in a stable manner using constraints from ana-
lyticity and unitarity in the form of Roy–Steiner equa-
tions [28, 50–55], with the result that ultimately the
value of σπN is fully determined by the amplitude at
threshold, i.e. the πN scattering lengths. These, in turn,
are known to high accuracy from measurements in pio-
nic atoms [56–60]. The result σπN = 59.1(3.5)MeV [28]
agrees with calculations based on chiral perturbation the-
ory, once the low-energy constants are extracted from a
phase-shift solution consistent with the pionic-atom scat-
tering lengths [27].
Unfortunately, these results from πN phenomenology

are in tension with the most advanced lattice calcula-
tions [23–26], see Table I. These results correspond to
(nearly) physical quark masses, thereby eliminating a
major source of systematic uncertainty in earlier calcula-
tions, but finite-volume corrections, discretization effects,
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Ref. fN
u + fN

d fN
s fN

c fN
Q fN f̂N

c f̂N
b f̂N

t f̂N

[23] 41(5) 113(60) 63(4) 342(47) 67(6) 65(5) 64(5) 349(44)

[24] 49(8) 43(13) 67(1) 294(12) 74(2) 70(1) 68(1) 304(11)

[25] 40(5) 44(11) 85(25) 68(1) 287(10) 74(1) 71(1) 69(1) 298(9)

[26] 37(6) 37(13) 69(1) 280(11) 75(1) 72(1) 70(1) 291(11)

[28] 63(4)

TABLE I: Lattice results [23–26] for the scalar couplings of the nucleon (in units of 10−3), for the lightest quarks compared
to the result from πN scattering [28]. fN

Q and fN refer to Eqs. (5) and (2), respectively, while quantities with a hat include
higher-order perturbative corrections as described in the main text. Statistical and systematic lattice errors have been added
in quadrature.

and excited-state contamination may not be under suf-
ficient control yet. It has also been suggested that the
tension could be due to deficient input for the πN scat-
tering lengths in the phenomenological analysis, which
could again be checked on the lattice [29], but the fact
that low-energy scattering data corroborate the pionic-
atom values makes this explanation appear unlikely [30].
For fN

s a similar cross check of lattice results with
phenomenology would need to rely on SU(3) relations,
but the slow convergence of the SU(3) expansion pro-
hibits a meaningful, quantitative test. Table I also lists
the heavy-quark couplings as well as the resulting values
for fN with and without perturbative corrections, which
prove to be only of moderate size. In particular, the di-
rect determination of fN

c from [25] is consistent with the
perturbative calculation.
To combine the results of Table I into a single value

for fN , we perform a naive average of the four lattice
values, take fN

u + fN
d = 0.052(12) as the mean between

lattice and phenomenology with an error sufficiently large
to cover both, and increase the error in fN

s = 0.043(20)
to be able to accommodate a similar potential bias as
for fN

u + fN
d . We include the perturbative corrections,

but add an additional error ∆fpert
N = 0.005, about half

the shift observed in Table I when adding the higher-
order terms. Altogether, this leads to the one-body (1b)
contribution

f1b
N = 0.307(9)ud(15)s(5)pert = 0.307(18). (9)

TWO-BODY CURRENTS

The spin-independent limits on σχN derived from
direct-detection experiments, see, e.g., [61–68], assume a
simple relation with the differential WIMP–nucleus cross
section

dσχN

dq2
=

σχN

4v2µ2
N

F2(q2), µN =
mNmχ

mN +mχ

, (10)

where q is the momentum transfer, v the relative ve-
locity, and F(q2) a nuclear form factor normalized to

(a) (b) (c)

FIG. 2: Two-body contributions to WIMP–nucleus scatter-
ing. Solid/dashed lines refer to nucleons/pions, the crosses to
the coupling of the external current.

F(0) = A. This decomposition ignores subleading cor-
rections, such as isospin violation or two-body effects,
which in general all come with an independent nuclear
form factor [40]. For the special case of Higgs-mediated
WIMP–nucleus scattering, isospin-breaking corrections
are small, see Eq. (7). In contrast, the leading effect
of two-body currents is expected to be coherent (scal-
ing with A), so that it can be included as an effective
shift in fN . This contribution is crucial to ensure consis-
tency: direct-detection limits on σχN convert limits on
the WIMP–nucleus rate to an effective WIMP–nucleon
cross section based on Eq. (10), effectively subsuming the
coupling to two nucleons. The cross section derived from
limits on invisible Higgs decays needs to be consistent
with this convention, and thus has to include the two-
nucleon effects as well. Note that if the nuclear structure
factors used in the interpretation of the direct-detection
experiments accounted for two-body contributions (as is
the case for the recent spin-dependent limits [69–72]),
the resulting WIMP–nucleon cross section could be inter-
preted as a true one-body quantity, and then the transi-
tion from collider limits would not require adding a two-
body correction.

The leading two-body diagrams in chiral EFT are
shown in Fig. 2. In the derivation, the couplings to the
scalar current mq q̄q and the trace anomaly θµµ lead to
two different responses [40]. For the scalar case, dia-
gram (b) is suppressed by two orders because there is no
scalar source in the leading πN chiral Lagrangian, while
the subleading Lagrangian does not produce a single-
pion vertex. The validity of the underlying chiral EFT
counting could be checked by comparing to nuclear σ-
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FIG. 3: Exclusion limits for scalar (blue), fermion (red), and vector (green) Higgs-portal WIMPs. The gray-shaded bands refer
to the range fN = 0.260 . . . 0.629 from the most recent ATLAS [12] and CMS [13] analyses, the dashed lines to the central
value fN = 0.326 considered therein, and the colored bands to our improved limits using Eq. (14). For comparison, we show
the direct-detection limits from SuperCDMS [62], PandaX-II [66], LUX [67], and XENON1T [68].

terms from lattice QCD, see [73] for such a calculation at
heavy pion masses. Similarly, diagram (c) requires an in-
sertion of the quark-mass matrix, which also suppresses
this contribution by two orders in the chiral counting.
This leaves only the coupling to the pion in flight in di-
agram (a). For θµµ, diagram (a) also enters, diagram (b)
is again only next-to-next-to-leading order, but there is
a leading-order contribution to diagram (c), which was
not included in [40].
The terms in diagram (c) are directly related to the

(N †N)2 contact operators that enter in the NN poten-
tial. Indeed, one can show that combining them with
parts of diagram (a), they yield the leading NN potential
VNN [74]. Taken together with momentum-dependent
one-body corrections at the same order, which can be
identified with the kinetic-energy operator T , one finds a
combined contribution for the θµµ response proportional
to

〈Ψ|T + VNN |Ψ〉 = Eb, (11)

where Eb < 0 is the binding energy of the nucleus repre-
sented by |Ψ〉, obtained from NN interactions only. This
adds to the remaining parts from diagram (a) (both the
scalar and θµµ responses) to an effective two-body shift in
fN [40, 74]

f2b
N =

1

A

Mπ

mN

11

9
Fπ(0)−

4

9

Eb

AmN

, (12)

where Fπ(q
2) refers to the nuclear structure factor for

the scalar current [40], in the same normalization where
F(0) = A in Eq. (10).
We have evaluated the two-body contribution Fπ(0) in

harmonic-oscillator states using the occupation numbers
that result from a large-scale shell-model diagonalization
with state-of-the-art nuclear interactions (see [40, 74] for
details) for a wide range of nuclei that includes all sta-
ble xenon, argon, germanium, and silicon isotopes. We
observe a robust coherence proportional to A of the two-
nucleon structure factors, leading to

f2b
N =

[

− 3.2(0.2)(2.1) + 5.0(0.4)
]

× 10−3

= 1.8(2.1)× 10−3, (13)

where the two terms correspond to those in Eq. (12),
and in each term the first uncertainty is from the varia-
tion over the different isotopes. For the binding-energy
term, we take the experimental energy, corrected for the
Coulomb contribution following [75]. This effectively in-
cludes higher-order terms, e.g., due to 3N interactions.
For the first term in Eq. (12), the second uncertainty is
due to the truncation in the chiral expansion and from the
use of the harmonic-oscillator model to evaluate Fπ(0).
We have taken this uncertainty significantly larger than
that naively estimated by the chiral expansion to ac-
count for possible cancellations of different contributions,
as would be manifest between kinetic and potential en-
ergies. We have also estimated the uncertainty in the
many-body calculation by using the occupation numbers
corresponding to two nuclear interactions, and the effect
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is less than 1%.

Numerically, we observe a partial cancellation between
the two terms, to the effect that the size of the two-body
corrections is reduced from the expected few-percent level
to below 1%. Combined with the Higgs coupling to a
single nucleon, we find

fN = f1b
N + f2b

N = 0.308(18), (14)

which is our final result.

IMPACT ON LHC EXCLUSION LIMITS

The relation between limits for the branching fraction
of invisible Higgs decays BRinv and σχN depends on the
nature of the Higgs portal. For instance, for a scalar,
vector, or fermion portal H†H S2, H†H VµV

µ, H†H f̄f ,
respectively, with Higgs doublet H and scalar, vector, or
fermion fields S, V µ, f , one finds

σχN = Γinv

8m4
Nf2

N

v2βm3
h(mχ +mN )2

gχ

(

mh

mχ

)

, (15)

where gS(x) = 1, gV (x) = 4/(12 − 4x2 + x4), and

gf (x) = 2/(x2 − 4), β =
√

1− 4m2
χ/m

2
h, v = 246GeV

is the Higgs vacuum expectation value, and BRinv =
Γinv/(Γinv+ΓSM), with ΓSM = 4.07MeV [76]. For details
we refer to [15].

The consequences of the improved coupling fN are il-
lustrated in Fig. 3, which is inspired by analogous figures
in the most recent ATLAS [12] and CMS [13] studies. For
definiteness, we adopt the CMS limit BRinv < 0.20 (at
90% confidence level). Even on a logarithmic scale the
impact due to the improved nuclear physics input used is
striking. Only a narrow band remains in the previously
considered parameter space, tightening considerably the
limits that result from experimental searches. Our re-
sults highlight that a careful determination of the nuclear
physics related to the dark matter interactions is key for
a correct determination of the limits that searches for in-
visible Higgs decays impose on Higgs-portal models for
dark matter.

In summary, we have evaluated the Higgs–nucleon cou-
pling, fN , using state-of-the-art phenomenological and
lattice-QCD calculations, and including the coupling of
the Higgs to two nucleons as predicted by chiral EFT.
Our result, fN = 0.308(18), reduces dramatically the un-
certainty in the excluded region derived from experiment.
This highlights that the nuclear physics input is key to
fully exploit the consequences of experimental searches,
and that it needs to be treated consistently in limits from
collider experiments and direct detection.
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