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Precision measurements of frequency are critical to accurate timekeeping, and are fundamentally
limited by quantum measurement uncertainties. While for time-independent quantum Hamiltonians,
the uncertainty of any parameter scales at best as 1/T , where T is the duration of the experiment,
recent theoretical works have predicted that explicitly time-dependent Hamiltonians can yield a
1/T 2 scaling of the uncertainty for an oscillation frequency. This quantum acceleration in precision
requires coherent control, which is generally adaptive. We experimentally realize this quantum
improvement in frequency sensitivity with superconducting circuits, using a single transmon qubit.
With optimal control pulses, the theoretically ideal frequency precision scaling is reached for times
shorter than the decoherence time. This result demonstrates a fundamental quantum advantage for
frequency estimation.

The ability to sense more accurately has historically
been the basis of many of our scientific advances and tech-
nological innovations. In particular, precision measure-
ments have been instrumental in advancing our knowl-
edge of fundamental physical laws [1–4]. Notably, fre-
quency measurements have been essential to experimen-
tal tests of general relativity, the standard model of parti-
cle physics, and quantum mechanics, and are the practi-
cal foundation of all timekeeping devices. The precision
of measurements is ultimately governed by the funda-
mentally probabilistic nature of quantum measurements,
which arises most basically in the Heisenberg uncertainty
principle. Traditionally, frequency measurements, such
as are conducted with atomic clocks [5–7], are associated
with the measurement of the energy difference, E, be-
tween two eigenvalues of a static Hamiltonian H, and the
frequency uncertainty arises from the energy-time uncer-
tainty principle [8], δω = δE/~ = 1/(2T ), where T is the
time of the experiment. New situations arise in frequency
metrology when one considers instead time-dependent
Hamiltonians, where the precision of frequency measure-
ments can be optimized with additional control.

In metrology, one seeks to determine a parameter
g from repeated measurements that naturally follow a
probability distribution pg(X), where X is some random
variable. For large data sets, the Cramér-Rao bound [9]
gives a universal limit for the mean squared deviation of
the parameter,

〈δ2ĝ〉 ≥ 1

vIg
, (1)

where v is a measure of the amount of data, ĝ is an
unbiased estimator of the parameter g formed from mea-
surement data, and Ig =

´
pg(X)(∂g ln pg(X))2dX is the

Fisher information [10] which characterizes the amount

of information about the parameter g that is contained in
the data. Therefore, the Fisher information is a natural
measure of how optimal a given measurement strategy
is for determining the parameter g with minimal uncer-
tainty.

For quantum parameter estimation, measurements on
quantum states |ψg〉 are used to find the probability dis-
tribution pg(X). In this case the Fisher information in
the quantum state is given by [11, 12],

I(Q)
g = 4

(
〈∂gψg|∂gψg〉 − |〈ψg|∂gψg〉|2

)
, (2)

which maximizes the classical Fisher information in the
measurement results on the state over all possible types of
quantum measurements. The quantum Fisher informa-
tion is a measure of the distinguishability of two states
|ψg〉 and |ψg+dg〉 and with this formulation, it is clear
that some quantum states garner more quantum Fisher
information than others. In particular non-classical cor-
relations can enhance measurement sensitivities. The use
of such non-classical resources in measurement has been
widely studied [13–15] and applied in several metrologi-
cal areas including imaging [16], gravitational waves [17],
and magnetometry [18]. Much of this research has fo-
cused on the scaling of the quantum Fisher information
with the number N of quantum systems; whereas un-
correlated systems lead to the standard quantum limit
∝ N , appropriate quantum correlations can lead to the
Heisenberg scaling ∝ N2 [15].

Here, we focus rather on how the quantum Fisher infor-
mation for a single quantum system scales with time [19].
If, for example, the parameter to be estimated is a multi-
plicative factor [20] on a static Hamiltonian, Hg = gH0,
then, given that unitary evolution for a time T is de-
scribed by Ug = exp(−igH0T ), the quantum Fisher in-
formation scales in time as Ig ∝ T 2 [20]. However, if
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Figure 1: Frequency estimation of a time-periodic Hamiltonian. (a), The experiment consists of a transmon qubit
dispersively coupled to a waveguide cavity. The qubit is subject to a time-dependent Hamiltonian Hω(t) and the task is to
estimate the frequency ω. (b), The eigenvalues µ± of ∂ωHω(t)/~. The quantum Fisher information is related to the integral of
µ+(t)−µ−(t), which is alternately positive or negative. (c), A control Hc(t) is used to guide the qubit evolution such that µ+(t)
and µ−(t) are maximally separated. (d), The scaling of the quantum Fisher information for the uncontrolled and controlled
measurement evolution, showing scaling as T 2 and T 4 respectively.

the Hamiltonian is instead time-dependent [14, 21] the
quantum Fisher information may exceed this scaling for
certain parameters, reaching a scaling of Ig ∝ T 4 for esti-
mating the frequency of an oscillating Hamiltonian under
optimal coherent control [22]. Very recent experiments
[23–25] in magnetic field sensing NV centers have demon-
strated that using a hybrid quantum/classical strategy
of estimating a local magnetic field value with a quan-
tum technique, repeated in time, together with a clas-
sical Fourier transform can achieve a Fisher informa-
tion of the frequency scaling as T 3. In this letter, we
experimentally demonstrate T 4 scaling of the quantum
Fisher information in the estimation of a Hamiltonian
oscillation frequency for a pseudo-spin half system. This
quantum enhanced scaling has been proved [22] to be
the best allowed by quantum mechanics in the kind of
system we consider in this work. This improved scaling
is achieved through adaptive optimal control where an
additional control Hamiltonian that depends on the es-
timated parameter is applied to the system to enhance
sensitivity. We show that the T 4 scaling is robust against
small variations in the control Hamiltonian, thus allowing
for adaptive control.

To illustrate how optimal control can be used to
maximize the quantum Fisher information, we consider
a time-dependent Hamiltonian imposed on a two-level
quantum system Hω(t) = A~ sin(ωt)σz/2, describing pe-
riodic modulation of the energy levels of the system with
amplitude A as shown in Figure 1a. Our focus is to max-
imize the quantum Fisher information of the modulation
frequency ω, that is to minimize the overlap of two quan-
tum states |ψω〉 and |ψω+δω〉 after time evolution under
the Hamiltonian for time T . We will show that the opti-
mal choice of quantum states is a superposition of energy
eigenstates (|0〉+ eiφ|1〉)/

√
2, which accumulate different

phases φω(T ) under the Hamiltonian evolution.

To formalize our discussion of the quantum Fisher
information, we reformulate Equation 2 as I

(Q)
ω =

4Var[hω(T )]|ψ0〉, where hω(T ) = iU†ω(0 → T )∂ωUω(0 →
T ), Uω(0 → T ) is the unitary evolution of the initial
state |ψ0〉 under the Hamiltonian, and Var[·] represents
the variance. In this form, we can see that the quantum
Fisher information is related to the squared difference be-
tween the minimum and maximum eigenvalues of hω(T ).

To determine the eigenvalues of hω(T ), we break the
unitary evolution Uω(0 → T ) into infinitesimal time in-
tervals as discussed in [22], and consider the eigenvalues
of hω(t) versus time. In the current case, the Hamilto-
nian commutes with itself at different times, so we ar-
range the system to be in a superposition of the eigen-
states of ∂ωHω(t)/~, such that the eigenvalues maintain
maximal separation. These eigenvalues simply evolve as
µ±(t) = ±At cos(ωt)/2. In Figure 1b we sketch µ±(t).
The quantum Fisher information about the frequency ω
associated with an evolution for time T is given by,

I(Q)
ω =

[ˆ T

0

[µ+(t)− µ−(t)]dt

]2
, (3)

which increases as T 2. Figure 1c displays how additional
control at the crossing points can be used to dramati-
cally enhance the QFI. By applying a control to guide
the qubit along a trajectory that maximizes the integral
(3), the QFI can increase instead as T 4 as shown in Fig-
ure 1d. The intuitive reason for the T 4 scaling versus
the T 2 scaling is that for time-independent Hamiltoni-
ans, two nearby quantum states corresponding to differ-
ent values of the parameter can only diverge from each
other with constant velocity, whereas in time-dependent
Hamiltonians, they can accelerate away from each other,
giving greater quantum distinguishability of the states in
the same period of time [22, 26, 27].
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Figure 2: Frequency metrology with optimal control. (a), Schematic of the estimation task: The qubit is prepared in a
superposition of energy eigenstates (|0〉+ |1〉)/

√
2, followed by an interaction with a time-periodic Hamiltonian with frequency

ω for a certain time, followed a π/2 pulse and projection in the σz basis to determine the acquired phase. (b), The energy
eigenvalue difference of Hamiltonian Hω(t) is sketched in time, together with the optimal coherent control pulses (repeated π
pulses at the antinodes of the oscillating Hamiltonian) designed to acquire maximum frequency information. This results in
the effective total Hamiltonian, Heff(t). The acquired phase is the time integral of this function. (c), The frequency sensitivity
is determined by varying ω, and a linear fit determines dφ/dω. (d), The phase uncertainty δφ versus experimental repetition
number N shows that the phase uncertainty is given by the binomial error 1/

√
4N (solid line). (e), The frequency sensitivity,

for the uncontrolled (red circles) and optimal control (blue diamonds) attain the respective limits (solid lines) for times shorter
than the decoherence time. The error bars indicate the estimated standard deviation of slope dω/dφ from the linear regression
fit as in panel (c). (e)(Inset), The quantum Fisher information associated with a given measurement protocol (uncontrolled;
red, controlled; blue), determined from the slope of the acquired phase versus frequency is displayed on a log-log plot versus
time.

We now turn to the experiment, where we realize
the optimal control depicted in Figure 1c. The exper-
imental setup consists of a superconducting transmon
circuit [28] that is dispersively coupled to a waveguide
cavity [29]. The qubit system is comprised of the low-
est two levels of the circuit, and is described by the
Pauli spin operators σx, σy, σz. The dispersive inter-
action between the qubit and the cavity, described by
the Hamiltonian Hint = −~χn̂σz allows for rapid, quan-
tum non-demolition measurement of the qubit in the
energy basis by probing the cavity resonance with mi-
crowave photons. Here χ/2π = −0.5 MHz is the dis-
persive coupling rate and n̂ is the cavity photon num-
ber operator. To create the time-dependent Hamiltonian,
Hω = A~ sin(ωt)σz/2, we drive the cavity with detuning
∆/2π = 37 MHz to populate the cavity with an average
n̄ = n̄0 +A sin(ωt)/2χ photons. The mean photon num-
ber n̄0 = 6.4 results in an ac Stark shift of 6.4 MHz and
the modulation amplitude A/2π = 0.60 MHz.

We first demonstrate the standard T 2 scaling of the
quantum Fisher information that is obtained without
Hamiltonian control. An equal superposition state (|0〉+
eiφ|1〉)/

√
2 maximizes the QFI, and the measurement

protocol is simply a Ramsey sequence as depicted in
Figure 2a. A π/2 pulse is applied, followed by waiting
for a time T , followed by a second π/2 pulse and pro-
jective measurement in the σz basis. The axis of the

second π/2 rotation is adjusted such that the projec-
tive measurement in the energy basis accumulates max-
imal information about the phase of the qubit. The
QFI is given in terms of the Bures distance [30], ds2 =

2(1 − |〈ψω|ψω+dω〉|), where I(Q)
ω = 4ds2/dω2. As such,

we vary ω by a small amount to determine the slope
(Figure 2c), where I(Q)

ω = (dφ/dω)2. The frequency sen-
sitivity is ultimately governed by the QFI and the phase
variance, which as shown in Figure 2d is given by the
standard binomial error δφ = 1/

√
4N due to projection

noise, resulting in a cumulative frequency information of
NI

(Q)
ω . As displayed in Figure 2e, the frequency sensi-

tivity improves as ω/(AT ), (QFI ∝ T 2) until dephasing
of the qubit, characterized by T ∗2 = 4 µs degrades the
sensitivity.

The key idea behind optimal coherent control is to im-
pose an additional time dependent Hamiltonian Hc(t) to
maximize the difference of the eigenvalues of hω(T ). In
Figure 2b we display this optimal Hamiltonian control,
which consists of discrete unitary π rotations applied to
the qubit at specific optimal times: these are applied at
the antinodes of the estimated Hamiltonian, rather that
at the nodes as is commonly seen in dynamical decou-
pling sequences [26]. In contrast to dynamical decou-
pling pulses, whose object is to refocus diverging states
and prolong coherence, our control pulses do the oppo-
site: the objective is to separate as quickly as possible
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two quantum states corresponding to nearby values of
the frequency in order to improve our resolution of that
parameter; hybrid schemes have very recently been pro-
posed [27]. In Figure 2e we show how under optimal con-
trol the frequency sensitivity attains the ultimate limit
δω/δφ = π/(AT 2) for short times and yields better sen-
sitivity over the no-control case as long as ωT > π. This
corresponds to a T 4 scaling of the QFI. At long times,
decoherence of the qubit causes the QFI to decrease due
to increasing overlap of the states |ψω〉 and |ψω+dω〉.

The optimal Hamiltonian control yields a T 2 improve-
ment over the QFI obtained with a standard Ramsey
measurement. Given a finite time resource in metrology,
such as the finite T ∗2 time of the qubit, this yields a sub-
stantial improvement in QFI, amounting to a factor of
740 in this experimental demonstration.

In contrast to recent work [23, 24] where T 3 scaling
of the QFI has been observed for times only limited by
the stability of an external reference, the T 4 scaling ob-
served here is limited to times T < T ∗2 . If we consider
sensing for a duration longer than T2, the optimal ap-
proach is to utilize repeated, back-to-back measurements
each with duration T2. By taking advantage of the fact
that these repeated measurements sample the signal at
different times a T 3 scaling of the QFI for the total sig-
nal sampling time is also possible with our approach, but
with an optimized prefactor.

Having demonstrated such a significant improvement
in the scaling of the quantum Fisher information with
time, it is worth inquiring as to whether other Hamil-
tonian parameters can be estimated with such preci-
sion. For example, could the QFI associated with the
amplitude I(Q)

A of the time dependent Hamiltonian also
achieve such scaling, or at least an improvement under
optimal control compared to the uncontrolled case? To
address this, we again consider the eigenvalues of hA,
µ± = ± sin(ωt)/2, which do not increase in time. As is
well known from work with nitrogen-vacancy spin sens-
ing [31–35], in this case the optimal control strategy is
again to apply π rotations, but this time at nodes of
the Hamiltonian, and yields an overall T 2 scaling of the
quantum Fisher information as we discuss in the Supple-
mental Information [36]. This is an improvement over the
no-control case, where the maximum quantum Fisher in-
formation does not increase for longer interaction times.

We note that the optimal control needed to obtain the
enhanced precision of the frequency depends on knowl-
edge of the phase and frequency, which is itself the pa-
rameter to be estimated! Therefore, in general, we must
apply adaptive control [37–40] where first some crude
knowledge of the parameter is obtained without control,
which is then used in the control Hamiltonian to obtain a
more precise estimate of the parameter, which is fed back
to adjust the coherent control in an adaptive loop until
the optimal arrangement is converged upon. One might
worry that the T 4 scaling is so sensitive to the matching

of the time-dependent Hamiltonian and control that the
T 4 scaling is difficult to achieve in practice. The degra-
dation of the QFI due to frequency mismatch between
the control and the parameter was analyzed for the case
of a rotating magnetic field in Ref. [22] and by apply-
ing a similar analysis here, we find that the QFI in the
presence of a frequency mismatch ∆ω is to leading order
I
(Q)
ω = A2T 4/π2 (1−∆ω2T 2/2). Because the correction
grows as T 2, an iterative procedure is required to refine
the control frequency. The requirements on matching
the phase of the control leads to a correction to the QFI
proportional to (1 − ∆θ2), which only depends on the
phase mismatch, ∆θ and does not grow with time [36].
In Figure 3 we show the experimentally obtained quan-
tum Fisher information for different mismatches between
the phase and frequency of the control Hamiltonian. As
shown in Figure 3a, the QFI reaches a maximum when
the control is matched to the modulation frequency ω
with vanishing phase offset. Figure 3a also highlights how
this control landscape can be mapped without knowledge
of the parameters that are to be estimated.
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Figure 3: Optimal control landscape. (a), Color plot of
the QFI as two control parameters are swept for T = 1.25 µs:
the phase difference between the control π pulses the peri-
odic Hamiltonian modulation (x-axis), and the duration Td

between the π pulses (y-axis) as specified by the control fre-
quency ωc = 2π/Td. The phase difference has been shifted
slightly to account for a 6-ns delay between the control pulses
and the periodic Hamiltonian. (b,c), Line cuts through the
control landscape (locations indicated as dashed red lines in
(a)) show that for small parameter mismatches the QFI is still
significantly greater than the uncontrolled case (red line). The
blue regions show the parameter uncertainty based on uncon-
trolled estimation using N = 100 experimental repetitions.

Figure 3b,c display the QFI versus frequency and phase
mismatch in detail. For the 1.25 µs interaction time
considered here, uncontrolled frequency and phase es-
timation based on N = 100 experimental repetitions
(used to reduce the phase uncertainty) is sufficient to find
the maximum in the QFI available with optimal control.
Therefore, the robustness of the optimal control improve-
ment in QFI to variations in the control parameters is
sufficient to allow adaptive control to rapidly converge



5

to the optimal values. In fact, in Ref. [22] it was proved
that the number of iterations required to approach the
maximum sensitivity grows only as a double-logarithm
of the total time T and in the Supplemental Information
[36] we discuss how an iterative procedure can be used
to adaptively improve the frequency precision.

In quantum enhanced metrology, one seeks to take ad-
vantage of quantum properties to maximally utilize the
available measurement resources. For parallel resources,
such as the number of quantum systems, entanglement
can be utilized to achieve Heisenberg scaling. We have
demonstrated how quantum coherence, optimally har-
nessed through coherent control, can maximally utilize
the serial resource: time. It is theoretically possible
to combine both the serial and parallel resources which
would give the best case quantum precision. The ad-
vantages conferred in frequency metrology with time-
dependent Hamiltonians opens new horizons in precision
measurement and time-keeping.
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