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Robust quantum computation requires encoding delicate quantum information into degrees of
freedom that are hard for the environment to change. Quantum encodings have been demonstrated
in many physical systems by observing and correcting storage errors, but applications require not just
storing information; we must accurately compute even with faulty operations. The theory of fault-
tolerant quantum computing illuminates a way forward by providing a foundation and collection of
techniques for limiting the spread of errors. Here we implement one of the smallest quantum codes
in a five-qubit superconducting transmon device and demonstrate fault-tolerant state preparation.
We characterize the resulting codewords through quantum process tomography and study the free
evolution of the logical observables. Our results are consistent with fault-tolerant state preparation
in a protected qubit subspace.

The possibility of robust quantum computation rests
on the fact that quantum information can be encoded in
degrees of freedom that are di�cult for local noise pro-
cesses to change. Quantum codes with this potential have
been demonstrated in many physical systems [1–11]. To
make practical use of these codes, however, it is neces-
sary not only to encode, decode, and observe errors, but
to compute with faulty and inaccurate operations in a
way that does not spread errors. The well-developed the-
ory of fault-tolerant quantum computing reveals a steep
experimental path toward this goal [12, 13]. Recently,
the question of what constitutes a minimal experimen-
tal demonstration of fault-tolerance was considered [14].
Fault-tolerant state preparation was demonstrated soon
thereafter using a quantum error detecting code with
trapped atomic ions [15]. Here we go beyond that re-
sult, implementing fault-tolerant state preparation on a
superconducting qubit system with supporting evidence
including quantum state tomography of prepared code-
words, acceptance and logical error probabilities with and
without error insertion, and analysis of the measured log-
ical observables under free evolution.

We implement one of the smallest quantum codes, a
four qubit code encoding two qubits [16], and character-
ize output states produced by fault-tolerant state prepa-
ration circuits. The circuits are fault-tolerant for only
one of the two encoded qubits, which allows direct com-
parison of their error rates. The circuits are applied in a
five-qubit transmon device with nearest-neighbor connec-
tivity. This device is a nontrivial subset of a surface code
lattice in the sense that it provides resources for detec-
tion of any single-qubit error. Although the connectivity
and size places limits on the set of fault-tolerant circuits
we can implement on the four-qubit code, we can use sta-
bilizer measurements to prepare codewords in a way that
is analogous to surface code state preparation.

Four qubit code – The four-qubit code [16] encodes two
logical qubits into four physical qubits and can detect
any error that acts on one of those physical qubits. It
is the smallest code that can detect a general error and

is unique [17]. The four-qubit code is defined by the
stabilizer group S = hS

x

, S
z

i with stabilizers [18] S
x

=
X1X2X3X4 and S

z

= Z1Z2Z3Z4. Here X = |0ih1| +
|1ih0| and Z = |0ih0| � |1ih1| are Pauli operators. The
pair of encoded qubits are defined by logical operators

X̄
L1 = X1X3, Z̄

L1 =Z1Z2, (1)

X̄
L2 = X1X2, Z̄

L2 =Z1Z3

The minimum distance of a stabilizer code is the mini-
mum number of qubits acted on by any Pauli operator
that commutes with S but lies outside of it [18, 19]; in
this case, that distance is two. Stabilizer codes are de-
scribed by parameters [[n, k, d]] where n is the number of
physical qubits, k is the number of logical qubits, and d
is the minimum distance. Our code, thus, is a [[4, 2, 2]]
code.
The code space is spanned by four states |0̄0̄, 0̃0̃i /

|0000i + |1111i, |0̄1̄, 0̃0̃i / |1100i + |0011i, |1̄0̄, 0̃0̃i /
|1010i + |0101i, and |1̄1̄, 0̃0̃i / |0110i + |1001i. On the
left hand side, we order the labels |L1L2, szsxi where s

z

and s
x

are syndrome bits that record phase and bit-flip
errors, respectively. The syndromes correspond to single-
shot measurements of the observables S

x

and S
z

, which
have eigenvalues (�1)sz and (�1)sx , respectively.
We define destabilizers Z̃

D

= Z4 and X̃
D

= X4 that
commute with the logical operators and anticommute
with corresponding stabilizers S

x

and S
z

. The destabiliz-
ers change the values of the syndrome bits without a↵ect-
ing the logical qubits. The whole four-qubit Hilbert space
is spanned by 16 states {|L1L2, szsxi} where L1 and L2

take values over the four states of the logical qubits and
s
z

and s
x

run over the four possible syndromes.
Implementation – The device consists of five fixed-

frequency superconducting transmon qubits, four of
which, D

i

with i 2 1, 2, 3, 4, are used as data qubits of
the code (see Fig. 1). The central qubit, S1, acts as a
syndrome qubit, and it is coupled to the four data qubits
via two coplanar waveguide (CPW) resonators acting as
quantum buses, with two data qubits on each bus. Each
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FIG. 1. (color online) (a) False-colored micrograph of a five-
qubit lattice. (b) Cartoon representation of a five-qubit lat-
tice and the logical operators on the data qubits as given in
Eq. 1. Arrows represent the directions of the two-qubit cross
resonance gate and point from the control to the target qubit.

qubit is coupled to its own CPW resonator for control
and readout. Readout signals are amplified via Joseph-
son Parametric Converters (JPCs) [20, 21]. Device fab-
rication methods are described in previous work [1, 3].
This is the same device that was available on the IBM
Quantum Experience in 2016 [22]. Additional details can
be found in the Supplemental Material [23].

Single-qubit gates are characterized using Cli↵ord
randomized benchmarking (RB) [24] and simultaneous
RB [25]. We find single qubit error per gate (EPG) of
all five qubits to be lower than ⇠ 9 ⇥ 10�4 and obtain
crosstalk error of less than ⇠ 6⇥10�4 from simultaneous
RB results (see [23] for all measured EPGs and detail of
crosstalk).

Two-qubit controlled-NOT (CNOT) [26–28] gates are
constructed using the microwave-based cross resonance
(CR) interaction. Using a four-pulse echoed cross reso-
nance gate [4, 29] as a two-qubit Cli↵ord gate generator,
we characterize four pairs of two-qubit gates through Clif-
ford RB. We find two-qubit EPG of less than ⇠ 4.6⇥10�2

[23]. The decomposition of a four-pulse echoed cross res-
onance CNOT gate (FPCX) into single-qubit gates and
CR interactions is drawn in Fig. 2 (a). The FPCX
echoes all of the first and second order Z -terms from the
cross-resonance Hamiltonian on the control, target, and
the spectator qubits (SQ); the terms are ZII, IZI, IIZ,

ZZI, ZIZ, IZZ. Here, the spectator qubits are the three
other qubits in the five-qubit lattice that are neither the
control nor the target qubit for each particular CNOT.
The FPCX sequence here is similar to the four pulse se-
quence used in previous work [4] but has extra pulses to
echo the IZI term, which is typically smaller than the
other terms. FPCX was necessary in order to correct
for errors seen when using a two-pulse echoed cross res-
onance CNOT gate (TPCX) [23].

Fault-tolerant state preparation – The logical state
|0̄

p

0̄
g

i is prepared by running the X-stabilizer (S
x

) cir-

cuit and measuring the syndrome qubit (shown in Fig. 2).
The logical qubit L1, denoted here by p, is a fault-
tolerantly prepared protected qubit, and L2, denoted by
g, is a gauge qubit that is not prepared fault-tolerantly.
The other logical states in the |0̄i and |1̄i basis are pre-
pared by applying logical bit-flips, Eq. 1, during the
|0̄

p

0̄
g

i state preparation. From the |0̄
p

0̄
g

i state, we can
prepare |+̄

g

+̄
p

i by applying Hadamard gates on the four
data qubits. Note that this swaps the indices of the logi-
cal states, exchanging X̄

L1 with Z̄
L2 and X̄

L2 with Z̄
L1.

The other logical states in the |+̄i and |�̄i basis are pre-
pared by applying logical phase-flips, Eq. 1, after the
Hadamard gates.
To characterize the state preparation circuit, we per-

formed quantum state tomography on the four data
qubits, and reconstructed states via maximum likelihood
estimation with POVMs obtained from the calibrations
[30]. The di↵erence between the ideal and reconstructed
state of |1̄

p

1̄
g

i is shown in Fig. 3. The boxed top left cor-
ner of the reconstructed state represents the projection
onto the codespace (0̃0̃). Considering the correspond-
ing state ⇢(0̃0̃), the largest errors are coherent errors on
the gauge qubit. The acceptance probability tr(⇢0̃0̃) and
fidelity of the prepared state ⇢ are obtained from ⇢0̃0̃. Re-
sults computed from state tomography data of additional
prepared logical states are given in Table I.

Prepare Accept |0̄
p

0̄
g

i |0̄
p

1̄
g

i |1̄
p

0̄
g

i |1̄
p

1̄
g

i
|0̄

p

0̄
g

i 0.7566 0.9726 0.0216 0.0040 0.0019

|0̄
p

1̄
g

i 0.7773 0.0245 0.9678 0.0037 0.0041

|1̄
p

0̄
g

i 0.7702 0.0028 0.0042 0.9673 0.0258

|1̄
p

1̄
g

i 0.7853 0.0033 0.0034 0.0224 0.9709

Prepare Accept |+̄
g

+̄
p

i |+̄
g

�̄
p

i |�̄
g

+̄
p

i |�̄
g

�̄
p

i
|+̄

g

+̄
p

i 0.7897 0.9667 0.0065 0.0199 0.0069

|+̄
g

�̄
p

i 0.7707 0.0057 0.9632 0.0064 0.0247

|�̄
g

+̄
p

i 0.7799 0.0247 0.0069 0.9626 0.0058

|�̄
g

�̄
p

i 0.7731 0.0065 0.0253 0.0063 0.9619

TABLE I. Acceptance probability and prepared state fidelity
given that it is in the codespace, s

z

s
x

= 00. These states
were prepared with faulty gates whose infidelities significantly
exceed the infidelity of the protected logical qubit.

Error insertion – To study how error propagates
through the |1̄

p

1̄
g

i state preparation circuit, we intro-
duce a phase error Z(✓) on S1 after the 1st (A), 2nd
(B), or 3rd (C) CNOT gate [see Fig. 2 (b)]. Since the
state preparation is done by syndrome measurement, we
first post-select on the syndrome measurement reading
c
s

= 1, noting that the syndrome qubit starts from the
excited state at the beginning of the circuit. Ideally,
P (c

s

= 1) = 1
2 , but we observe P (c

s

= 1) ⇡ 0.45 due to
dissipation. Next, we compute S

z

in software and post-
select on c1�c2�c3�c4 = 0. The acceptance probability
is given by P(c1 � c2 � c3 � c4 = 0|c

s

= 1), and the state
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FIG. 2. (color online) CNOT pulse sequences and state
preparation circuit. (a) Decomposition of the four-pulse
echoed CNOT gate (FPCX). Pulses are applied to the phys-
ical channels representing control, cross-resonance (CR), tar-
get, and spectator qubits (SQ). The pulses comprise a frame
change (FC) with an angle parameter, Gaussian derivative
(GD) with an amplitude and angle, and a Gaussian flattop
(GF) with an amplitude and angle. FC is a virtual Z -gate
applied in software, where Z (✓) = FC(�✓) [31]. (b) Logical
state preparation circuit. |0̄

p

0̄
g

i is prepared without any post
rotations (PR). Other states in logical Z-basis are prepared
by applying X̄

L1 and/or X̄
L2. |+̄

g

+̄
p

i is prepared by apply-
ing the Hadamard gates on all four data qubits at PR. Other
states in logical X-basis are prepared by applying Z̄

L1 and/or
Z̄

L2 following the Hadamard gates at PR. Note that the first
(left) logical qubit is the protected qubit in Z-basis but be-
comes the gauge qubit in X-basis due to the application of
Hadamard gates at PR.

FIG. 3. (color online) Magnitude of the reconstructed
|1̄

p

1̄
g

i state. We show the absolute di↵erences between the
actual and ideal matrix elements in the basis consisting of 16
states {|L1L2, szsxi}. Labels L1 and L2 run over the four
states of the logical qubits in Z-basis. Syndrome bits s

z

and
s
x

run over the four possible syndromes and represent the
presence of phase-flip and bit-flip errors, respectively. The
Supplement describes the physical to logical change of basis.

(a) Acceptance Z(✓) (b) Error Z(✓)

(c) Acceptance Y (✓)⌦ Y (✓) (d) Error Y (✓)⌦ Y (✓)

FIG. 4. (color online) (a) Acceptance and (b) error proba-
bility of logical states with phase error Z(✓) inserted on the
syndrome qubit at various sites. We fit the data to Eq. 2
and 3 with an additional systematic o↵set parameter � that
is added to ✓ [23]. (c) Acceptance and (d) error probability
of logical states with error Y (✓) inserted on the control and
syndrome qubit after each CNOT gate.

of the protected (gauge) qubit is determined from the
parity of c1 and c2 (c1 and c3).
Phase errors propagate from target to control through

a CNOT gate, hence a Z-error at locations A, B, or
C appears as an X-error on {D2,D3,D4}, {D3,D4}, or
{D4}, respectively. As we increase the error parameter
✓, the acceptance probability decreases for locations A
and C but remains constant for location B (see Fig. 4
(a)). Fig. 4 (b) plots the state preparation errors as a
function of ✓. As we increase ✓ at location B, error on
the protected qubit remains constant, while the error on
the gauge qubit increases. For errors inserted at loca-
tions A and C, the gauge qubit error is always larger
than protected qubit error.
Although a distance two code can only detect one er-

ror on the data qubits, correlated two-qubit gate errors
are also detectable because the circuit is fault-tolerant by
construction. In particular, ideal two-qubit gates never
act directly on pairs of data qubits, so two-qubit gate er-
rors can only a↵ect one data qubit at a time. To mimic
this correlated error, we simultaneously introduce Y (✓)
errors on the control and target qubits after each CNOT
gate. Similar to single-qubit error insertion, the accep-
tance probability decreases as a function of ✓ (see Fig. 4
(c)) and lower errors are observed on the protected qubit
versus the gauge qubit (see Fig. 4 (d)).
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To understand the functional form of the error inser-
tion data, we modeled error insertion in the ideal state
preparation circuit followed by asymmetric readout er-
rors with the same readout parameters for each qubit.
For each error location, we find the acceptance probabil-
ity and conditional logical error probabilities as a func-
tion of the error’s angle ✓ and the readout parameters
p0 = P (0|1) and p1 = P (1|0). For single Z(✓) error in-
sertion at location j, the acceptance probability has the
form

P
j

(accept) = a
j

+ b
j

cos(✓), (2)

and the conditional logical error probabilities on logical
qubit r have the form

P
j

(X̄
Lr

|accept) =
c(r)
j

+ d(r)
j

cos(✓)

P
j

(accept)
. (3)

Each coe�cient is a function of p0 and p1 [23]. The ex-
pressions for locations A and C are identical. Likewise,
for each location, the expression for combined logical er-
ror X̄

L1X̄L2 on the gauge and protected qubit is the same
as the corresponding expression for X̄

L1 alone.
The dashed curves in Figs. 4 (a) and (b) are fits to the

functions given in Eq. 2 and 3, but we include a system-
atic o↵set parameter � that is added to ✓, i.e. we replace
cos(✓) by cos(✓ + �). The o↵set �

j

for each location j
is determined from either the acceptance or error data
based on which has the greatest curvature. The accep-
tance probability then has 2 remaining free parameters,
ã
j

and b̃
j

. Once these are known, each error probability

has 2 remaining free parameters c̃(r)
j

and d̃(r)
j

.
Non-exponential decay under free evolution – In this

section we study the free evolution of |1̄1̄i, post-selected
to the codespace of the four-qubit code. Our goal is to
observe how decoherence and fixed coupling terms be-
tween transmons act on logical states, particularly in the
time interval immediately following fault-tolerant state
preparation. The experiments are analogous to decay
and spin-echo experiments on physical qubits.

Although we are working with encoded states, these
decay experiments do not demonstrate a fault-tolerant
memory. A fault-tolerant quantum memory would be
implemented in this context by repeated syndrome mea-
surements. Repeated syndrome measurements are not
feasible in this device due to both technical limitations of
measurement durations as well as exponentially decreas-
ing acceptance probability as a function of the number
of syndrome measurements. These limitations could be
overcome by implementing a quantum error-correcting,
rather than error-detecting, code and using a device that
is designed for fast, repeated readout. The smallest error-
correction experiments would currently require at least 7
qubits total [32], and small surface codes exist with 13
qubits total [33].

The results for the |1̄1̄i state, shown in Fig. 5, have
several features that are evidence of short-time protection
from local noise. First, the decay is non-exponential,
exhibiting a slow initial decay rate that increases with
time. The ideal functional form for either encoded qubit
is

P (1̄|accept) = (2� 2et/T1 + e2t/T1)�1, (4)

where we have assumed the same T1 for each qubit. A
cross-over with the ideal physical decay curve P (1) =
exp(�t/T1) occurs at t = T1 ln 2, which is on the order of
T1. Second, due to fault-tolerant state preparation, the
initial population is greater for the protected than the
gauge qubit in the presence of error.
To explain how the observed results for the |1̄1̄i state

di↵er from the ideal form, we construct a simplified
model of the logical decay incorporating errors in the
initial state and readout. The initial state is modelled
as ⇢(0) =

P
L1,L2,sz,sx

p
L1,L2,sz,sx⇢L1,L2,sz,sx , which is

a 15 parameter mixture of joint eigenstates ⇢
L1,L2,sz,sz

of Z̄
L1, Z̄

L2, S
x

, and S
z

. The parameter values are
assigned from state tomography data. Each qubit of
this state undergoes independent amplitude damping de-
scribed by the channel E

�

(⇢) = A0⇢A
†
0 + A1⇢A

†
1, where

A0 = |0ih0| +
p
1� �|1ih1| and A1 =

p
�|0ih1|. Each

qubit has a di↵erent damping parameter � = 1� e�t/T1

given by a value of T1 that is fitted to experimental data.
After damping, each qubit is projectively measured in
the computational basis. The readout error process is
modeled as an asymmetric binary channel with crossover
probabilities P (0|1) and P (1|0). The crossover probabili-
ties are assumed to be the same for each qubit and fitted
to the experimental data. Finally, the noisy outcomes
are post-processed as described earlier.
Conclusion – We demonstrate that even in small code

lattices, fault-tolerant principles can result in short-time
protection from local dissipation, causing the free evolu-
tion of post-selected logical states to match and nearly
out-perform the free evolution of physical qubits. Due to
fault-tolerant circuit design, we observed that one of the
two encoded logical qubits has significantly reduced con-
ditional logical error. Additionally, we include quantum
state tomography data for prepared codewords, study er-
ror insertion, and analyze the decay of measured logical
observables under free evolution. The latter shows evi-
dence of short-time protection from local dissipation. A
composite two-qubit gate, the four-pulse echoed cross
resonance gate, compensated for systematic phase er-
rors during state preparation. This work, which directly
tests the fundamentals of small codes, is also part of
the broader e↵ort to understand how noise propagates
in larger systems. Repeated stabilizer measurements are
needed to study time dependence of fault-tolerant stor-
age.
Other experiments related to fault-tolerance using the
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FIG. 5. (color online) Encoded |1̄
p

1̄
g

i lifetime and ac-
ceptance probability, P (0̃0̃). The ideal curve corresponds
to Eq. 4, with T1 = 76.75µs. Data for the encoded state
is plotted with model fits described in the text, with stan-
dard errors (statistical errors) added in the inset. Relaxation
times of the four data qubits obtained from the model are
T1(i) = {57, 84, 85, 81}µs with i 2 {1, 2, 3, 4}, which are within
one standard deviation of the mean T1 measured for each
qubit [23]. The shaded region contains the curves for each
qubit from the values of T1(i) obtained from the model fit;
p0 = 0.05 and p1 = 0.015 are measurement errors from the
fit. Supplemental Material contains |+̄+̄i data.

[[4,2,2]] code with equivalent hardware on the Quantum
Experience have been recently reported [34].
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