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We study the phase diagram of quantum Hall bilayer systems with total filing ⌫
T

= 1/2 + 1/2 of the lowest

Landau level as a function of layer distances d. Based on numerical exact diagonalization calculations, we obtain

three distinct phases, including an exciton superfluid phase with spontaneous interlayer coherence at small d, a

composite Fermi liquid at large d, and an intermediate phase for 1.1 < d/l
B

< 1.8 (l
B

is the magnetic length).

The transition from the exciton superfluid to the intermediate phase is identified by (i) a dramatic change in the

Berry curvature of the ground state under twisted boundary conditions on the two layers; (ii) an energy level

crossing of the first excited state. The transition from the intermediate phase to the composite Fermi liquid

is identified by the vanishing of the exciton superfluid stiffness. Furthermore, from our finite-size study, the

energy cost of transferring one electron between the layers shows an even-odd effect and possibly extrapolates

to a finite value in the thermodynamic limit, indicating the enhanced intralayer correlation. Our identification of

an intermediate phase and its distinctive features shed new light on the theoretical understanding of the quantum

Hall bilayer system at total filling ⌫
T

= 1.

PACS numbers: 73.21.Ac, 73.43.-f, 73.21.-b

Introduction.—The multilayer quantum Hall systems

demonstrate tremendously rich physics when tuning the in-

terlayer interaction by changing layer distance d. One of the

prominent examples is the bilayer systems[1–4] at a total fill-

ing ⌫
T

= 1 (⌫ = 1/2 in each layer) with negligible tun-

neling. Experimentally, the bilayer systems can be realized

in single wide quantum wells, double quantum wells or bi-

layer graphenes [5–9]. Theoretically, the quantum states in

small and large d limits have been well understood. When

the layer distance is small, the strong interlayer coulomb in-

teraction drives the electron system into a pseudospin (layer)

ferromagnetic long range order (FMLRO) state with the spon-

taneous interlayer phase coherence and interlayer superfluid-

ity [10–14]. The FMLRO can also be described as an exciton

condensation state as an electron in an orbit of one layer is

always bound to a hole in another layer forming an exciton

pair. This excitonic superfluid state can be described by Hap-

lerin “111 state” wavefunction [15, 16]. In the limit of infinite

layer separation, the bilayer system reduces to two decoupled

composite Fermi liquids (CFL)[17–21].

Several theoretical scenarios[22–35] have been proposed

for understanding the transition between the exciton super-

fluid and CFL at intermediate layer distances. Due to its

non-perturbative nature, controlled analytical method for this

problem is still lacking, and numerical techniques have been

playing an important role. Some numerical studies report a

single phase transition, or a crossover, between the small and

large distance regimes[36–38]. Meanwhile, an intermediate

phase is found in ED and variational studies [39–42], where

the p-wave paired composite fermions state [40, 41] is pro-

posed. Until now it remains controversial for the phase at in-

termediate distances.

On the experimental side, transport measurements indicate

a transition between an exciton condensed interlayer coher-

ent incompressible quantum Hall effect state and compress-

ible liquid with varying the layer distance[43–46]. At smaller

layer distance, the total Hall conductance is quantized to e2/h.

A strong enhancement in the zero-bias interlayer tunneling

conductance [47] and the vanishing of the Hall counterflow

resistance [46, 48] provide evidence for interlayer coherence

[4]. Above a critical distance d ⇡ 1.6 ⇠ 2 (in units of mag-

netic length l
B

) which depends on the quantum well thick-

ness, a compressible liquid state is found [4, 43–50]. How-

ever, the nature of the state at the intermediate distance is un-

settled after numerous investigations[4].

Motivated by this unsolved issue, we perform an extensive

ED study of ⌫ = 1/2 + 1/2 bilayer system on torus[51–53]

up to 20 electrons, the phase diagram is summarized in Fig. 1.

We identify signatures of two phase transitions between the

exciton superfluid and the CFL at critical distances d
c1 ⇡ 1.1

and d
c2 ⇡ 1.8, respectively. For layer distance d < d

c1 , we

establish the exciton superfluid state by the existence of Gold-

stone mode, vanishing of single pesudospin excitation gap and

finite exciton superfluid stiffness. Furthermore, the Berry cur-

vature shows strong fluctuation, leading to non-quantized drag

Hall conductance which is consistent with the gapless feature.

For the intermediate layer distance d
c1 < d < d

c2 , we find

the gapped single pseudospin excitation with even-odd effect,

which is combined with a finite exciton superfluid stiffness.

The drag Hall conductance is quantized to zero with no singu-

larity in the Berry curvature, while the total Hall conductance

remains exactly quantized to e2/h. The quantum phase tran-

sition between the exciton condensed state and intermediate

phase is identified by a dramatic change in the Berry curvature

of the ground state under twisted boundary conditions on the

two layers, and the level crossing with a change of the nature

of the low-lying excitations at d = d
c1 . The fact of level cross-

ing near d
c1 is consistent with previous studies[37, 39, 42].

The second transition between the intermediate phase and the

CFL is characterized by the vanishing of the exciton super-
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fluid stiffness. Further discussions of the finite size effect of

numerical simulation can be found in supplementary materi-

als.

Model and Method.— We consider bilayer electron systems

subject to a magnetic field perpendicular to the two dimen-

sional (2D) planes. We use torus geometry with the length

vectors L

x

and L

y

, and an aspect angle ✓ between them. Here,

L
x

= L
y

= L and ✓ = ⇡/2 for most of calculations. The

magnetic length l
B

⌘
p
~c/eB ⌘ 1 is set to be the unit

of the length and N
�

represents the number of magnetic flux

quanta determined by |L
x

L
y

sin✓| = 2⇡N
�

. In the presence

of strong magnetic field, the Coulomb interaction, projected

onto the lowest Landau level, is written as

V =
1

2⇡N
�

X

i<j,↵,�

X

q,q 6=0

V
↵�

(q)e�q

2
/2eiq·(R↵,i�R�,j).

(1)

Here, ↵(�) = 1, 2 are indices of two layers (which are the two

components of a pseudospin 1/2), V
↵,↵

(q) = 2⇡e2/("q) and

V12(q) = V21(q) = 2⇡e2/("q) · e�qd

are the Fourier transfor-

mations of the intralayer and interlayer Coulomb interactions,

respectively. d is the distance between two layers and R

↵,i

is the guiding center coordinate of the ith electron in layer ↵.

In the present work, we consider the physical systems with

two identical 2D layers (with zero width) in the absence of

electron interlayer tunneling while spins of electrons are fully

polarized due to strongly magnetic field.

We use ED algorithm to study the energy spectrum and state

information on torus. In order to study the physics of the pseu-

dospin sector, we generalize the periodical boundary condi-

tion to twisted boundary condition with phase 0  ✓↵
�

 2⇡
along � direction in the layer ↵. By a unitary transformation,

one can get the the periodic wave function  on torus with

| i = exp

⇥
�i

P
↵

P
i

�
(✓↵

x

/L
x

)x↵

i

+ (✓↵
y

/L
y

)y↵
i

�⇤
|�i.

Then the Berry curvature is defined by F (✓↵
x

, ✓�
y

) =

Im(
⌦
@ /@✓↵

x

|@ /@✓�
y

↵
�

⌦
@ /@✓�

y

|@ /@✓↵
x

↵
). The inte-

gral over the boundary phase unit cell leads to the topologi-

cal Chern number matrix C
↵,�

= 1/2⇡
R
d✓↵

x

d✓�
y

F (✓↵
x

, ✓�
y

),
which contains topological information for the bilayer quan-

tum Hall state[38, 55–60]. Numerically, applying common

and opposite boundary phases on two layers, one can ob-

tain the Hall conductances in the layer symmetric and anti-

symmetric channel, denoted by Cc(e2/h) and Cs(e2/h), re-

spectively. The drag Hall conductance, defined by �d

xy

=
(Cc � Cs)(e2/2h) = (C1,2 + C2,1)(e2/h) , can be obtained

directly by calculating C1,2 (or C2,1), corresponding to twist-

ing boundary phases along x direction in one layer and along y
direction in another layer. One can also obtain the exciton su-

perfluid stiffness when applying twisted boundary phases[38].

Energy Spectrum and Pseudospin Excitation Gap.—In

Fig. 2 (a), we show the lowest energies in each momentum

sector for different layer distances d. For smaller layer sep-

arations d . 1.1, indeed we find the low energy excitation

has the form of linear dispersing Goldstone mode for small

momenta[54]. One can also measure the pseudospin excita-
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Fig. 1: (Color online) The phase diagram of ⌫ = 1/2+1/2 quantum

Hall bilayers with varying layer distance d/l
B

. We identify three

phases: exciton superfluid phase, the intermediate phase and com-

posite Fermi liquid (CFL) phase. (a) The transition from exciton

superfluid to intermediate phase near d
c1 ⇡ 1.1 is identified by the

drag Hall conductance �d

xy

and the energy level crossing. Here, the

ground state is in the momentum sector K0 = ⇡ and N = 16 . (b)

The transition from intermediate phase to CFL phase near d
c2 ⇡ 1.8

is identified by the exciton superfluid stiffness ⇢
s

[see Eq. 2].

tion gap directly, which represents the energy cost of moving

one electron from one layer to another layer and is defined as

�
ps

(d) ⌘ E0(N", N#, d) � E0(N/2, N/2, d) + d · S2
z

/N
�

.

Here, N" = N/2 + �N and N# = N/2 � �N denote the

number of electrons in two layers for S
z

= �N = 1, 2, · · ·
excitation. The energy shift d · S2

z

/N
�

is the charge energy

induced by the imbalance of electron number in two layers

with total pseudospin S
z

[61]. As shown in Fig. 2 (b), the fi-

nite size scaling of �
ps

(d) for S
z

= 1 goes to zero in the

thermodynamic limit for d . 1.1.

As for layer distance d & 1.1, the low energy linear disper-

sion spectrum moves up in energy [see Fig. 2 (a)] with new

lower energy excitations appearing at other momenta sectors

for d & 1.1 as shown in Fig. 1 (a). For the layer distance

d t 1.1, the energy spectrum shows the level crossing of the

first excited states between the K
y

= ⇡ (or K
y

= 0) and

|K
y

� K0| = 2⇡/N sectors (see Fig. 1(a)). Although the

ground state still locates in K
y

= K0 sector at d t 1.1, the

level crossing for the first excited state indicates the change of

the low-lying energy spectrum for the bilayer systems. Here,

level crossing also characterizes a phase transition based on

the indications of pseudospin gap.

For d & 1.1, the S
z

= 1 pseudospin excitation displays

even-odd effect determined by the electron number in each

layer [see the inset of Fig. 2 (c)], indicating of the trend of
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Fig. 2: (Color online) (a) The energy dispersion curves of lowest-energy excitations at each momentum sector. Here, the ground state is in the

momentum sector K0 = ⇡. (b) and (c) show finite size scaling of the single pseudospin excitation gap �
ps

by using parabolic function for

layer distanced/l
B

< 1.1 (b) and d/l
B

> 1.1 (c). The inset of (c) indicates the even-odd effect in the intermediate phase up to N = 20. (d)

The energy spectrum gap �
E

⌘ E1(d)� E0(d) as a function of d/l
B

. The cusp near d/l
B

⇡ 1.1 indicates the level crossing for the excited

states.

intralayer pairing. As shown in Fig. 2 (c) with system sizes

up to 20 electrons, the finite size scaling indicates gapped pe-

sudospin excitation for even electron number in each layer,

while it is gapless when the electron number in each layer is

odd. One should be careful in the fitting due to limited number

of data points, however, the finite pseudo-spin excitation gap

is also implied by the disappearance of linear dispersion mode

[see Fig. 2 (a)] , the flat Berry curvature, and well-defined

spectrum gap when twisting boundary conditions [see Fig. 3

(b) and (d) below].

Fig. 2 (d) shows the energy gap �
E

(d) ⌘ E1(d) � E0(0)
between two lowest energy states, one can find that the cusp

due to the level crossing for the lowest energy excitations near

the transition point d
c1 t 1.1 is robust and independent on the

lattice size, indicating the intrinsic property of such a transi-

tion. Clearly, we have identified a transition from the gapless

pseudospin FMLRO state at smaller distance to the intermedi-

ate phase with new low-lying excitation and finite pseudospin

gap.

Berry Curvature and Energy Spectrum Under Twisted

Boundary Conditions.— The transition near d
c1 t 1.1 can

also be identified by the Berry curvature F (✓↵
x

, ✓�
y

) and the

energy spectrum under twisted boundary conditions. Physi-

cally, a gap state has a well-defined smooth Berry curvature,

while a gapless state may have singular Berry curvature as-

sociated with gapless points in low energy spectrum. Fig. 3

(a) and (b) show the Berry curvatures at the d < d
c1 and

d
c1 < d < d

c2 by applying ✓1
x

= ✓
x

, ✓2
x

= 0 and ✓1
y

= 0,

✓2
y

= ✓
y

for the lowest energy state in the sector (⇡,⇡). Fig. 3

(a) shows the strong fluctuation of the Berry curvature, sug-

gesting the gapless pseudospin spectrum when d < d
c1. The

Berry phase is not well defined due to near level crossing (with

Berry phase integrated over each singular point only defined

up to the fractional part of 2⇡), which gives rise to the non-

quantized drag Hall conductance in this regime[38]. Since

the Hall conductance in the symmetric channel is well defined

in this regime, the non-quantized drag Hall conductance in-

dicates gapless feature of the antisymmetric channel. On the

other hand, the Berry curvature is near flat without any sin-

gularity in d
c1 < d < d

c2 regime [see Fig. 3 (b)], which is

consistent with the well-defined single pseudospin excitation

gap in this phase. Furthermore, the integral of the Berry curva-

ture gives us zero drag Hall conductance in the intermediate

phase, indicating the well defined Hall conductance in sym-

metric channel or finite charge gap in the intermediate phase.

We also find that Berry curvatures in all four sectors (0, 0)
,(0,⇡),(⇡, 0),(⇡,⇡) always have similar features and twisting

boundary phases will connect the ground state (⇡,⇡) to the

other three states. In Fig. 3 (c) and (d), one can find the en-

ergy spectrum of the lowest two states in the same momentum

sector (K
x

,K
y

) = (⇡,⇡) with twisted phases. Here, we map

the phase ✓
x

, ✓
y

into one-dimensional quantity ✓ ⌘ 10✓
x

+ ✓
y

for convenience of plotting. The singularity in the Berry cur-

vature for d < d
c1 origins from the energy level crossing as

the bilayer relative boundary phase ✓
y

approaching 2⇡ in con-

trast to the behavior in the d > d
c1 regime, where a small gap

opens to separate the lowest two states, indicating the exis-

tence of the pseudospin gap. Based on the above analysis, we

confirm that the pseudospin Berry curvature also indicates the

phase transition taking place near d
c1 .

Exciton Superfluid Stiffness.—To study the evolution of ex-

citon superfluidity with the layer distances, we obtain the ex-

citon superfluid stiffness ⇢
s

by adding a small twisted bound-

ary phase[38], which is proportional to the superfluid density

and identifies the energy cost when one rotates the order pa-

rameter of the magnetically ordered system by a small angle.

In our ED calculation, the exciton superfluid stiffness can be

obtained according to

E(✓
t

)/A = E(✓
t

= 0)/A+
1

2
⇢
s

✓2
t

+O(✓4
t

), (2)

where E(✓
t

) is the ground-state energy with twisted (oppo-

site) boundary phases ✓
t

between two layers ✓
t

= ✓1
x

� ✓2
x

(✓1,2
y

= 0), A = |L
x

⇥ L

y

| is the area of the torus surface.

Fig. 3 (c) to (e) show the energy spectrum as a function of

twisted phases for different layer distance. At smaller layer
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Fig. 3: (Color online) The Berry curvature F (✓↵
x

, ✓�
y

) for d/l
B

=0.8 (a) , d/l
B

=1.2 (b). Here, �✓
x

and �✓
y

are the interval of mesh in phase

space. It has strong fluctuation in FMLRO phase (a), while it is smooth in the intermediate phase (b). (c) to (e) are energy spectrum of N = 16
system with twisted boundary phases for d/l

B

=0.8 (c), d/l
B

=1.4 (d) and d/l
B

=3 (e). By fitting the energy spectrum with twisted phases, one

can get the exciton superfluid stiffness ⇢
s

[see Eq. 2] (f), which decreases with the layer distance and finally vanishes for d > d
c2 . (f) From

bottom to top, d/l
B

increases from d/l
B

= 0 with interval 0.2.

separation, one can find the ground state energy increases with

tuning the twisted phases [see Fig. 3 (c) and (d)]. By fitting the

energy curve using the quadratic function [see Fig. 3 (f)], we

get the exciton superfluid stiffness ⇢
s

, which decreases with

the increase of the layer distance, and finally falls down to a

negligible value for d > d
c2 [see Fig. 1 (b)]. As shown in

Fig. 3 (e), the energy almost does not change with the twisted

phases for larger distances, indicating the vanish of superflu-

idity and the decoupling of two layers for d > d
c2 , corre-

sponding to CFL states.

Discussion.— We study the phase diagram of ⌫ = 1/2 +
1/2 quantum Hall bilayers on torus and find that the exciton

superfluid phase and CFL phase are separated by an interme-

diate phase, which exhibits finite exciton superfluid stiffness,

flat Berry curvature, zero drag Hall conductance and even-odd

effect of pseudospins.

Theoretical interpretation of the intermediate phase may

start from two well known limits. Starting from the infi-

nite distance, it is nature to choose composite Fermion (CF)

picture[31–34, 63]. Recently, a fully gapped interlayer pair-

ing phase is proposed based on random-phase approxima-

tion calculation[33], which is consistent with our numeri-

cal findings of flat Berry curvature as well as gapped spin-

1 and charge excitations, but the explanation of finite exci-

ton superfluid stiffness is lacking. The other candidate, inter-

layer coherent CFL (ICCFL)[31] state, has finite pseudospin

stiffness due to interlayer U(1) phase fluctuations and pos-

sesses quantized Hall conductance in antisymmetric chan-

nel, which is consistent with our ED findings on finite pseu-

dospin gap and flat Berry curvature. However, ICCFL indi-

cates compressible property with respect to symmetric cur-

rent, while our numerical data indicates finite charge gap as

well as enhanced intralayer correlation [see supplementary

material]. To understand the physics in charge channel bet-

ter, one may start from the small distance limit in the com-

posite boson (CB) picture[28, 42, 62] and assuming the sys-

tem is ⌫ = 1 integer quantum Hall state. Based on recent

proposed wavefunction[62], the SU(2) symmetry for CBs

emerges near d
c1 , leading to the level crossing of first excited

state[see Fig.1(a)]. The low-lying charge excitation is dom-

inated by interlayer bound state of CB merons for d < d
c1

while it is replaced by intra-layer bound state of CB merons

for d
c1 < d < d

c2 , which explains the finite charge gap or

quantized charge Hall conductance and the enhanced intra-

layer correlations in the intermediate phase.

When taking both limits into account, a mixed-state repre-

sentation with considering both interlayer and intralayer cor-

relations has been intensively studied[28, 40–42, 64]. Such

mixed representation leads to a p-wave interlayer pairing

phase[40, 41] or the superfluid disordering phase [42] in the

intermediate distance, which are consistent with numerical

finding of the incompressibility in charge channel and the dis-

appearance of Goldstone mode as the lowest energy excitation

[64]. However, to explain all of numerical data consistently, it

seems that one has to take into account the interplay between

the interlayer and intralayer correlations, which is still a theo-

retical challenge and calls for further theoretical study.
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