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We present a finite-temperature extension of the retarded cumulant Green’s function for calcula-
tions of exited-state, correlation, and thermodynamic properties of electronic systems. The method
incorporates a cumulant to leading order in the screened Coulomb interaction W , and improves on
the GW approximation of many-body perturbation theory. Results for the homogeneous electron
gas are presented for a wide range of densities and temperatures, from cool to warm dense matter
regimes, which reveal several hitherto unexpected properties. For example, correlation effects remain
strong at high T while the exchange-correlation energy becomes small; also the spectral function
broadens and damping increases with temperature, blurring the usual quasi-particle picture. These
effects are evident e.g., in Compton scattering which exhibits many-body corrections that persist at
normal densities and intermediate T . The approach also yields exchange-correlation energies and
potentials in good agreement with existing methods.
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Finite temperature (FT) effects in electronic systems
are both of fundamental interest and practical impor-
tance. These effects vary markedly depend on whether
the temperature T is larger or smaller than the Fermi
temperature TF (typically a few eV). At “cool” temper-
atures (T ≪ TF ), electrons are nearly degenerate, and
Fermi factors and excitations such as phonons dominate
the thermal behavior [1–3]. In contrast, thermal occu-
pations become nearly semi-classical and plasmon exci-
tations are important in the warm-dense-matter (WDM)
regime (T ≈ TF ) where condensed matter is partially
ionized. Recently there has been considerable interest
in both experimental and theoretical investigations of
WDM ranging from laser-shocked systems and inertial
confinement fusion to astrophysics [4–6]. Many such
studies focus on thermodynamic properties using FT
generalizations of density functional theory (DFT) [7–
10]. Although in principle, DFT is exact [11–13], prac-
tical applications are based on approximate exchange-
correlation functionals [9, 14, 15] fit to the electron gas
[16–21]. However, these approaches have various limi-
tations. First, many materials properties such as band-
gaps, optical spectra, photoemission, and Compton scat-
tering depend on quasi-particle effects and inelastic losses
[22, 23], which require extensions of DFT and TDDFT
[24–26] for accurate treatments. Although methods like
quantum Monte-Carlo (QMC) can provide accurate cor-
relation energies [16, 17, 21], they are not directly appli-
cable to excited state and spectral properties. Second,
fits to exchange-correlation functionals can exhibit un-
physical behavior outside the range of theoretical data
[14]. Third, while Green’s function (GF) methods within
many-body perturbation theory (MBPT) provide a sys-
tematic framework for excited state and thermodynamic
equilibrium properties [27], and are widely used at low
T [1–3, 28] and even nuclear matter[29], relatively little

attention has been devoted to their use in WDM [30, 31].
In an effort to address these limitations, we have devel-

oped an (FT) extension of the retarded cumulant Green’s
function [32, 33] for calculations of excited state, cor-
relation, and thermodynamic properties. Notably the
approach permits a physical interpretation of correla-
tion effects in terms of the cumulant, which is directly
related to the electron self-energy. The cumulant ap-
proach improves on the GW approximation of MBPT for
spectral properties [34], and is exact for certain models
[35]. For example, in contrast to GW , the cumulant ap-
proach explains the multiple-plasmon satellites observed
in x-ray photoemission spectra (XPS) [34, 36–39]. At
T = 0 the method has been applied in a variety of con-
texts [38, 40–43]. As an application relevant to FT DFT,
we have implemented the approach for the homogeneous
electron gas (HEG) over a broad range of densities and
temperatures. Our results show that besides reductions
in quasi-particle energy shifts (e.g., band-gaps) with in-
creasing T , the spectral function broadens and excited
states become strongly damped, corresponding to short
mean-free-paths and smeared-out band-structure, blur-
ring the conventional quasi-particle picture. Finally ther-
modynamic properties and exchange-correlation internal
energies are calculated using the Galitskii-Migdal-Koltun
(GMK) sum rule [27, 44, 45], which serve as a check on
our approximations and yield results that compare well
with accurate PIMC (path-integral Monte-Carlo) calcu-
lations [16].

Briefly our approach is based on the retarded Green’s
function formalism [1, 27], using a FT extension of the cu-
mulant approximation [32, 46]. Below we outline the key
elements of the approach; additional technical details of
the formalism and our implementation are given in Sup-
plementary Material. The retarded one-particle Green’s
function G(ω) satisfies a Dyson equation G = G0+G0ΣG
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[47], where Σ is the FT retarded self-energy. Formally
Σ can be obtained by analytical continuation of the
Matsubara self-energy to real energies, and can be ex-
pressed in terms of G, the screened Coulomb interaction
W = ǫ−1v, and a vertex function Γ [32, 47]. Here and be-
low matrix indices and arguments are suppressed, and we
use atomic units e = h̄ = m = 1 unless otherwise speci-
fied. Most practical calculations ignore vertex corrections
(Γ = 1). With this restriction, a variety of approxima-
tions are used: The widely used GW approximation is
based on the Dyson equation and MBPT to first order in
W ; then Γ = 1 and G = G0 + G0ΣGWG [32, 48]. As
an approximation the FT quasi-particle self-consistent
GW approach (QPSCGW) [30] starts with the GF on
the Keldysh contour; while self-consistency is included,
vertex corrections, satellites, and damping are ignored.

The retarded cumulant approach focused on here work
is based on an exponential representation of G in the
time-domain for a given single-particle state k, in which
G is assumed to be diagonal, and the spectral function
Ak(ω) is obtained from its Fourier transform,

Gk(t) = −iθ(t)e−iεx
k
teC̃k(t), (1)

Ak(ω) = −
1

π
Im

∫

dωeiωtGk(t). (2)

This formulation builds in implicit dynamic vertex cor-
rections [32, 36], and can be justified using the quasi-
boson approximation [32], in which electron-electron in-
teractions are represented in terms of electrons coupled to
bosonic excitations. An advantage is that exchange and
correlation contributions are separable Ck(t) = −iΣx

kt+

C̃k(t), and all correlation effects are included in the dy-
namic part C̃k(t). Here Σx

k = Σqnk−qvq is the ex-
change part of the FT Hartree-Fock one-particle energy,
εxk = εk +Σx

k, εk = k2/2 the bare energy, vq = 4π/q2 the
bare Coulomb interaction, and nk are single-particle oc-
cupation numbers. More elaborate GF methods exist at
least in principle, including higher order MBPT [49, 50],
and dynamical mean-field theory with impurity Green’s
function’s [51, 52], but are more demanding computa-
tionally.

The FT cumulant formulation is directly analogous to
that for T = 0 [33], apart from implicit temperature de-
pendence in it’s ingredients. The form of the retarded
cumulant Ck(t) can be obtained by matching terms in
powers of W to those of the Dyson equation [33, 34].
Carried to all orders the cumulant GF is formally ex-
act; however, by limiting the theory to first order in W ,
G0C = G0ΣGWG0, the retarded GW self energy ΣGW is
sufficient to define the FT cumulant. C̃(t) has a Landau
representation, which implies a positive-definite spectral
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FIG. 1: (Color online) FT retarded cumulant kernel γk(T, ω)
(top); and spectral function Ak(T, ω) for the HEG (bottom)
for rs = 4. Vertical lines in the top plot are shown at ±ωp.
Note the enhanced symmetry of both γk and Ak at high-T .
The inset shows a comparison of the cumulant (solid) and
GW (dashes) spectral functions at k = 0 for the lowest and
highest temperatures.

function and conserves spectral weight [32, 35, 53],

C̃k(t) =

∫

dω
γk(ω)

ω2
(e−iωt + iωt− 1), (3)

γk(ω) =
1

π
|ImΣk(ω + εk)| . (4)

The kernel γk(ω) (Fig. 1 top) from the imaginary part of
ΣGW (ω) reflects the quasi-boson excitation spectrum in
the system, with peaks corresponding to those inW (ω) ∝
ImΣk(ω + εk).
The basic ingredients in the theory Eq. (1-3), are thus

G0, the GW self-energy ΣGW , and the screened Coulomb
interaction W (q, ω) = ǫ−1(q, ω)vq, where ǫ(q, ω) is the
dielectric function. These quantities can be calculated
using standard FT MBPT [1, 27], starting from the Mat-
subara Green’s function. The FT analog of the GW self
energy for electrons coupled to bosons is (cf. the Migdal
approximation [1])

ΣGW (ω, T ) =

∫

dω′
d3q

(2π)3
|ImW (q, ω′)| ×

×

[

f(εk−q) +N(ω′)

ω + ω′ − εk−q + iδ
+

1− f(εk−q) +N(ω′)

ω − ω′ − εk−q + iδ

]

.(5)
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Here N(ω) = 1/(eβω − 1) is the Bose factor, f(ε) =
1/(eβ(ε−µ) + 1) the Fermi factor, β = 1/kBT , and µ(T )
is the chemical potential, as determined below. At high-
T the behavior of γk is dominated by the Bose factors
N(ω) ∼ kBT/ω (T → ∞), and becomes strongly sym-
metric about ω = 0. To obtain W we use for simplicity
the FT-RPA approximation for the dielectric function

ǫ(q, ω) = 1 + 2vq

∫

d3k

(2π)3
fk+q − fk

ω − εk+q + εk
. (6)

The imaginary part of ǫ(q, ω) is analytic [54, 55], and the
real part is calculated via a Kramers-Kronig transform.
This yields the FT loss function L(q, ω) = |Im ǫ−1(q, ω)|.
For the HEG L(q > 0, ω) exhibits broadened and blue-
shifted plasmon-peaks with increasing T [55]. The chem-
ical potential µ = µ(T,N) implicit in the Fermi fac-
tors f(ω), is determined by enforcing charge conservation
Σk nk = 〈N(T )〉, where the occupation numbers nk(T )
are given by a trace over over Ak(ω) [44]

nk(µ, T ) =

∫

∞

−∞

dωAk(ω)f(ω). (7)

Values of nk(T ) can be measured by Compton scattering
[56–58] and are sensitive to the many-body correlation ef-
fects in Ak. At low-T , Ak(ω) exhibits multiple-satellites
for k < kF , while for k > kF and at T > TF , the quasi-
particle peak broadens, and overlaps the satellites. Thus
in WDM the structure of Ak blurs into single asymmet-
ric peak with a centroid at εxk(T ) and root mean square
width δk given by the 2nd cumulant moment of Ak(ω)
δ2k = C̃′′

k (0) =
∫

dω γk(ω).
A dimensionless measure of correlation strength [32]

is the satellite magnitude in the spectral function ak ≡
ln(1/Zk) =

∫

dω γk(ω)/ω
2, where the renormalization

constant Zk is determined from the last term in Eq.
(3). This measure characterizes corrections to the quasi-
particle approximation and corresponds to the mean
number of bosonic satellites. For plasmons in the HEG,

ak ≈ 0.2r
3/4
s = 0.56 at rs = 4 and T = 0, where rs is

the Wigner-Seitz radius; surprisingly ak is only weakly
dependent on temperature so that correlation effects re-
main strong at high T . Formally the structure of the
cumulant in Eq. (3) is consistent with the conventional
quasi-particle picture, i.e., a renormalized main peak
red-shifted by a “relaxation energy” ∆k and a series of
satellites. The correlation part of the quasi-particle en-
ergy shift ∆k is obtained from middle term in Eq. (3),
while the first term gives rise to satellites at multiples of
the plasmon peak ωp. The quasi-particle energy is then
εqpk = εk +∆k, where

∆k = Σx
k +

∫

dω
γk(ω)

(ω − iδ)
. (8)

The real part ∆′

k is the relaxation energy which is compa-
rable to that in QPSCGW [30]. Due to the increasingly
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FIG. 2: (Color online) Real (top) and imaginary (bottom)
parts of the quasiparticle energy correction ∆k for varying
temperature.

symmetrical behavior of γk(ω), ∆
′

k decreases smoothly
with T . However, a striking difference with the T = 0
behavior is the presence of an imaginary part ∆′′

k even
at the Fermi momentum, which becomes large at high-
T since γk(0) 6= 0. This behavior implies strongly
damped propagators that blur the usual quasi-particle
picture, smearing band-gaps and band-structures. This
broadening is clearly evident in the spectral function
Ak(ω) = (1/π)|ImGk(ω)| [27, 44] (Fig. 1), which is di-
rectly related to x-ray photoemission spectra (XPS). In
contrast, the GW spectral function retains satellite struc-
ture even at high T (Fig. 1 inset).
One of the advantages of the cumulant formalism is

that it provides an alternative for calculations of thermo-
dynamic equilibrium properties. Remarkably, knowledge
of µ(T ) is sufficient to determine the FT DFT exchange-
correlation potential for the HEG [59] since vxc(T ) ≡
µxc(T ) = µ(T )− µ0(T ), where µ0(T ) is the chemical po-
tential for non-interacting electrons (Fig. 3). Moreover,
the FT total internal energy per particle ε(T ) ≡ E(T )/N ,
can be calculated from the GMK sum-rule [27, 44, 45],

ε(T ) =
∑

k

∫

dω [ω + εk]Ak(ω)f(ω) ≡ εH + εxc, (9)

which is valid for any Hamiltonian with only pair in-
teractions. This relation is similar in form to the zero-
T Galitskii-Migdal sum-rule, except for the Fermi fac-
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FIG. 3: (Color online) Finite-T exchange-correlation poten-
tial vxc (top) and exchange-correlation internal energy per
particle εxc vs τ = T/TF (bottom) for the HEG from the
cumulant expansion (blue), compared to PIMC[16] (crosses)
and fits to FT-DFT[14] (red circles). Additional results are
given in the Supplementary Material.

tor. The exchange-correlation internal energy εxc(T ) is
then obtained by subtracting the Hartree part εH , and
results for the HEG are shown in Fig. 3. Clearly the
agreement between the cumulant results, path-integral
Monte Carlo (PIMC) calculations [16], and fits to FT-
DFT functionals [14] is quite good. Calculations of the
exchange-correlation free-energy require an additional
entropic contribution [31]. At T = 0, εxc was slightly bet-
ter with the retarded cumulant than with G0W0, but self-
consistent GW gave better total internal energies [33].
Finally, we calculate the Compton spectrum Jq(ω) fol-
lowing Ref. [60],

Jq(ω) =

∫

d3k dω′Ak(ω
′)Ak+q(ω + ω′)f(ω′)f(ω + ω′).

(10)
At small T , effects of correlation are quite noticeable
(Fig. 4), leading to an effective temperature T ∗ (i.e. the
temperature at which free-electron calculations match
the interacting ones) of (T ∗ − T )/TF ≈ 0.3 (see inset),
while at high-T the effect is smaller but non-negligible,
(T ∗ − T )/TF ≈ 0.1. These results may be important
in calibrating Compton scattering as a potential “ther-
mometer” for WDM [56].
In summary we have developed a finite-T Green’s func-

tion approach for calculations of excited state and ther-
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FIG. 4: (Color online) Finite-T Compton spectrum compared
to the free-electron T = 0 result at rs = 4 and q = 3 Bohr−1.
The inset shows the difference between the effective temper-
ature T ∗ at which the free-electron calculation matches the
cumulant result at T .

modynamic properties over a wide range of densities and
temperatures. Our approach is based on the retarded cu-
mulant expansion to first order in W . This approxima-
tion greatly simplifies the theory and provides a practi-
cal approach both for calculations and the interpretation
of exchange and correlation effects in terms of the re-
tarded cumulant Ck(t) or equivalently, the FT GW self
energy ΣGW . Thus the method provides an attractive
alternative to FT DFT and QMC methods, which are
not directly applicable to many excited state properties
and spectra. The cumulant GF builds in an approximate
dynamic vertex, going beyond the GW approximation,
yet is no more difficult to calculate. Illustrative results
for the HEG explain the crossover in behavior from cool
to WDM regimes and the blurring of the conventional
quasi-particle picture. Although the calculations here are
for the spin-unpolarized case, the generalization to polar-
ized calculations is in progress. Also, although we have
focused on the HEG, reflecting the importance of density
fluctuations at high-T , the cumulant can be generalized
to include other quasi-boson excitations such as phonons
since the leading cumulant is linear in bosonic couplings
[46]. We find that correlation corrections remain strong
even at high T . Calculations of thermodynamic equilib-
rium quantities including exchange-correlation internal
energies and potentials are in good agreement - typically
within a few percent - with existing quantum PIMC cal-
culations. Many extensions are possible, ranging from ex-
cited state and spectra to the thermodynamic properties
of realistic systems, and potentially to the development
of improved FT DFT functionals [9].
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