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A simple framework for Dirac spinors is developed that parameterizes admissible quantum dynam-
ics and also analytically constructs electromagnetic fields, obeying Maxwell’s equations, that yield
a desired evolution. In particular, we show how to achieve dispersionless rotation and translation of
wave-packets. Additionally, this formalism can handle control interactions beyond electromagnetic.
This work reveals unexpected flexibility of the Dirac equation for control applications, which may
open new prospects for quantum technologies.
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Introduction. The common aim of quantum control is
to find a tailored external electromagnetic field to steer
the ensuing dynamics in a desired fashion [1]. This ca-
pability, in particular, is enabling quantum technologies
with the prospect of revolutionizing metrology, informa-
tion processing, and matter manipulation. However, lit-
tle is known about the control of the Dirac equation in
spite of its modern applications reaching into nearly every
domain of physics, going far beyond its original intention
[2, 3]. For example, lasers have already reached inten-
sities where light-matter interactions must be described
within the Dirac theory [4]. Studies of the properties
of heavy elements led to the establishment of relativistic
quantum chemistry [5–8] based on the Dirac equation.
Moreover, there is a growing list of low energy systems
emulating Dirac fermions in solids [9–11], optics [12, 13],
cold atoms [14, 15], trapped ions [16, 17], and circuit
quantum electrodynamics [18].

The Dirac equation is commonly expressed as [2]

γµ[ic~∂µ − ceAµ]ψ = mc2ψ, (1)

where the summation over repeated indices is adopted, ψ
is a four-component complex spinor, m is the mass, c is
the speed of light, γµ are the 4× 4 so-called gamma ma-
trices, Aµ is the four-vector potential and µ = 0, 1, 2, 3.

The Dirac equation (1) can be viewed as a “first quan-
tization” approximation to QED. The solutions of Eq.
(1) exclude effects such as radiation reaction and parti-
cle creation/annihilation prominent at ultra-relativistic
energies. Nevertheless, Eq. (1) provides a mean-field
description of relativistic effects at low and moderate en-
ergies. A moving Dirac electron generates the current
JµD = ψ†γ0γµψ that emits secondary radiation, which is
not accounted for by Eq. (1). Therefore, a solution of
the Dirac equation is physical if the energy loss due to
the secondary radiation is much smaller than the electron
kinetic energy. This criterion should be satisfied in the
applications of the Dirac equation to quantum control.

In this Letter we present the framework of Relativistic
Dynamical Inversion (RDI) opening up a new route to
coherent control for the Dirac dynamics: Given a desired

wavepacket evolution, we analytically design electromag-
netic control fields obeying Maxwell equations. This
should be compared with other techniques such as short-
cuts to adiabaticity [19–21] analytically constructing in-
teractions that often go beyond electromagnetic fields.

The purpose of the current work is to solve the fol-
lowing problem: Given an arbitrary (desired) spinorial
spacetime wavepacket ψ, find an electromagnetic field Aµ
such that Eq. (1) is satisfied. This is accomplished by
RDI in two steps: First, we verify the attainability of the
given evolution ψ by assessing the existence of the un-
derlying Aµ leading to valid Maxwell equations. Second,
if it exists, an explicit form of Aµ is obtained. Moreover,
the method can also be used to assess for attainable dy-
namics.

The task of constructing the control field yielding the
desired dynamics at all times and positions is one of the
most important and challenging problems in quantum
control. In particular, transporting coherent wavepack-
ets without disturbance is a required building block in
quantum technologies. RDI allows for finding analytic
solutions not feasible by other current methods. This is
possible due to unique properties of the Dirac equation.

Exact solutions of Eq. (1), a system of four partial dif-
ferential equations, are rare. The vast majority of them
are for highly symmetric stationary systems [3, 22, 23].
Furthermore, finding exact solutions with probability
densities having finite integrals over the whole three di-
mensional space is a formidable task. Only a handful
of solutions for time dependent dynamics exist [24–31].
Most of the investigations call for either semi-classical
methods [32] or numerical calculations [33–39]. In ad-
dition to being computationally demanding, commonly
used numerical schemes are plagued by unphysical ar-
tifacts at the fundamental level [40, 41]; thus, there is
a need for systematic construction of analytic solutions.
RDI fulfills all these needs by providing stationary as well
as time-dependent exact solutions integrable in two and
three dimensions.

RDI simultaneously seeks the state ψ and the vector
potential Aµ describing physically admissible dynamics.
Considering that Eq. (1) is bilinear with respect to
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both ψ and Aµ, it may seem that the proposed approach
is even more challenging than solving the linear Dirac
equation for ψ. Nevertheless, the following four elements
make RDI much simpler than the traditional methods:
(i) The Dirac equation is written in the form where both
ψ and Aµ are 2 × 2 complex matrices [42, 43]. (ii) The
cross term responsible for the bilinearity is eliminated by
expressing the vector potential as an explicit function of
the state. (iii) The physical consistency of the state is ac-
complished by demanding the Hermiticity of the vector
potential expressed in matrix form. (iv) Enforcing the
Lorentz covariance by decomposing the state into space-
time rotations as well as a transformation of the internal
degrees of freedom significantly reduces the complexity
of the analytic derivations.

Methodology of Relativistic Dynamical Inversion. The
Dirac equation (1) can be written in different forms em-
phasizing the geometry of the Lorentz group [42–50].
Here, we employ the Baylis formulation [42, 43, 51–53]
(see also Sec. I of Ref. [54]) where the state ψ in Eq. (1)
is represented by the matrix Ψ and its Clifford conjugate
Ψ̄,

ψ =


ψ1

ψ2

ψ3

ψ4

⇐⇒


Ψ =

(
ψ1 + ψ3 −ψ∗2 + ψ∗4
ψ2 + ψ4 ψ∗1 − ψ∗3

)
,

Ψ̄ =

(
ψ∗1 − ψ∗3 ψ∗2 − ψ∗4
−ψ2 − ψ4 ψ1 + ψ3

)
.

obeying the Dirac equation in the matrix form [42, 43]

ic~∂̄Ψσ3 − ceĀΨ−mc2Ψ̄† = 0,

where Ā = σµAµ, ∂̄ = σµ∂µ, σ0 = 1 is an identity ma-
trix, σ1,2,3 are Pauli matrices. Note that Ā must be a
Hermitian matrix by construction. According to Ref.
[49], det Ψ = 0 for the Majorana and Weyl fermions as
well as for the flag-dipole spinors, whereas det Ψ 6= 0 for
electrons/positrons. Thus, in the latter case, the vector
potential may be expressed as a function of the state

ceĀ =
(
ic~∂̄Ψσ3 −mc2Ψ̄†

)
Ψ−1. (2)

A crucial insight is the spinor factorization for elec-
trons/positrons: Ψ =

√
ρL, where ρ is a non-negative

scalar function modulating the probability density [73]
and L is an invertible matrix representing a Lorentz
group element [44–46].

Considering that a member L of the special Lorentz
group [44–46] is composed of spatial rotations R, a boost
B and a transformation of internal degrees of freedom
generated by the Yvon-Takabayashi angle β [55, 56], the
state can be factorized as [43–46]

Ψ =
√
ρBReiβ/2. (3)

The boost B is parametrized by the velocity components
cu = c(u1, u2, u3) (bold symbols denote three dimen-

sional vectors throughout)

B = B(u) =
uµσµ + 1√
2(1 + u0)

, (4)

with u0 =
√

1 + u2; whereas, the spatial rotations are
parametrized by the angles θ = (θ1, θ2, θ3)

R = R(θ) = exp
(
−iθkσk/2

)
. (5)

Note that the density ρ, velocity u, rotation angle θ
and Yvon-Takabayashi angle β are in general functions
of space and time.

RDI is performed in the following way: Spacetime
functions ρ, u, θ and β are initially selected to describe a
desired dynamics of the Dirac state Ψ. The constructed
factorization (3) is substituted in Eq. (2) to obtain the
vector potential in the matrix form Ā.

If Ā is not Hermitian, the proposed dynamics is not
reachable with physical fields, and the parametrization
ρ, u, θ, and β needs to be modified.

If Ā is Hermitian, then the procedure is completed:
The obtained vector potential Aµ = Tr (Āσµ)/2 en-
ables to recover the electromagnetic fields Fµν =
c (∂µAν − ∂νAµ) and the source Jν = ∂µF

µν/(ε0c) gen-
erating them. Provided the current Jν , the obtained
fields Fµν necessarily satisfy Maxwell’s equations. Note
that Jν differs from the current JµD = Tr (ΨΨ†σµ) =
ψ†γ0γµψ emanating from the Dirac equation.

RDI is a trial-and-error procedure to find a suitable
parametrization ρ, u, θ, β of the desired dynamics to
yield a pair Aµ, Ψ analytically satisfying the Dirac equa-
tion. In a general case, the obtained Aµ may have a com-
plicated temporal and special profile hard to implement
experimentally.

Furthermore, RDI has a very general foundation,
which is applicable to interactions beyond electromag-
netic, e.g., non-linear Dirac equations and scalar inter-
actions coupling through the mass (mc2 → mc2 + V ) as
shown below. The inversion procedures in Refs. [26, 57]
can be viewed as specialized cases of RDI.
Dispersionless rotation. We now find an electromag-

netic field that moves a Gaussian wavepacket along a
circular trajectory in the x− y plane without distortion.
Since the center of the wavepacket should follow the tra-
jectory r(t) = r0(cosωt, sinωt, 0), the desired state evo-
lution is

Ψ = e−
eB0
4~ [(x−r0 cosωt)2+(y−r0 sinωt)2]B(u), (6)

where u = ṙ/
√

1− (ṙ/c)2 and the values of r0 and ω
must be selected such that r0ω < c to avoid superlumi-
nal propagation. According to RDI, the vector potential
generating the dynamics consists of a constant homoge-
neous magnetic field B0 perpendicular to a planar electric
field with a spatial and temporal profile. However, for the
frequency

~ω0 = mc2 −
√

(mc2)2 + 2eB0c2~, (7)
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FIG. 1: Dispersionless rotation. The black diffused circle rep-
resents the electron cloud [Eq. (6)] rotating along the circle
with frequency ω without changing its shape. This dynam-
ics is achieved by a combination of a rotating electric field
with a fixed spatial configuration (blue arrows) and a homo-
geneous magnetic field B0 perpendicular to the plane (crossed
red circles). The values of the parameters are r0 = 2µm,
B0 = 0.35T, and ω = −61.55ns−1 obeying Eq. (7).

the electric field aquires a fixed spatial configuration ro-
tating in time. This expression for ω0 can be regarded
as the cyclotron frequency corrected for quantum effects
(see Sec. III of Ref. [54]).

In Fig. 1, the crossed circles represent the homogeneous
magnetic field perpendicular to the plane, and the electric
field at the initial time t = 0 is displayed as blue arrows
in the x − y plane. According to Sec. III of Ref. [54],
these electromagnetic fields satisfy Maxwell’s equations
with an electric current but without free charges. The
black diffused circle (centered at x = 2µm and y = 0)
depicts the initial Gaussian [Eq. (6)] state whose shape
is preserved during the rotation along the grey circular
arrow.

The non-relativistic limit c → ∞ of the driv-
ing controls consist of the homogeneous magnetic
field B0 and the circularly polarized electric field:
−(r0ω/e) {(eB0 +mω) cosωt, (eB0 +mω) sinωt}. This
setup can be shown to preserve the Gaussian shape
within the Schrödinger equation.

As shown in Sec. III of Ref. [54], the magnetic field
is unaltered in the classical limit ~ → 0; whereas, the
vector norm difference between the exact electric field E
and its classical limit reads∣∣∣E− lim

~→0
E
∣∣∣ =

γr0ω
3

e

~
2c2

(8)

where γ = [1− (r0ω/c)
2]−1/2 is the Lorentz factor. This

reveals that quantum effects are enhanced by relativistic
dynamics. The spatial inhomogeneity in the exact elec-
tric field depicted in Fig. 1 is due to spin-orbit coupling,
which is simultaneously a relativistic and quantum effect.

FIG. 2: Dispersionless translation of an electron. Time snap-
shots of the state evolution [Eq. (9)] (a) at the beginning of
the translation t = 0.ps and (b) at t = 0.505ns. The elec-
tromagnetic field in the Dirac equation performing this trans-
lation consists of the time-dependent homogeneous magnetic
field perpendicular to the plane represented by red crossed cir-
cles while the electric field is displayed by blue arrows. The
parameters in Eq. (9) are L = 10µm, T = 1ns and B0 = 1T.

Note that this dynamics can be oberved at experimen-
tally available values of B0 = 0.35T and |E| ∼ 0.3V/m
employed in Fig. 1. In such a regime, the synchrotron ra-
diation energy loss per cycle is infinitesimally (i.e., 11 or-
ders of magnitude) smaller than the electron’s kinetic en-
ergy. Therefore, the obtained solutions satisfy the phys-
icality criterion.

Dispersionless translation. We now apply RDI to
achieve a spatial translation of a wavepacket without
changing its initial shape. For example, consider the
translation along the y axis with the trajectory Y (t).
Calculating the proper velocity u from r(t) = (0, Y (t), 0),

we apply RDI to the dynamics Ψ = e−
eB0x2

4~ g(t, y)B(u).
It turns out that physical fields exist only if g(t, y) =
G(y − Y (t))/

√
u0(t) for an arbitrary function G(y). In

particular, the translation of the Gaussian

Ψ =
1√
u0(t)

exp

(
−eB0[x2 + (y − Y (t))2]

4~

)
B(u) (9)

results in the electromagnetic field composed of a time
dependent homogeneous magnetic field and an electric
field with temporal and spatial dependence given in Sec.
IV of Ref. [54]. For the specific trajectory Y (t) =
(L/2)[1 + sin(π(t − T/2)/T )] for 0 ≤ t ≤ T , Fig. 2 dis-
plays two snapshots of the electric field at the beginning
of motion [Fig. 2(a)] and at the middle [Fig. 2(b)].

In the non-relativistic limit c→∞ the driving control
is made of a constant magnetic fieldB0 along z and a time
dependent electric field exclusively directed along the tra-
jectory as dictated by Newton’s law eE2 = mY ′′(t).
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As elaborated in Sec. IV of Ref. [54], the classical
limit ~ → 0 affects neither the magnetic field nor the
electric field along the direction of motion. However, the
exact component of the electric field perpendicular to the
direction of motion can be written as

eE1 =
(

lim
~→0

eE1

)
− ~

2c2
d

dt

(
γ
..

Y
)
, (10)

where γ = [1 − (Ẏ /c)2]−1/2 is the Lorentz factor.
This quantum correction resembles the Abraham-Lorentz
force describing the interaction of a charged particle with
its own electromagnetic field. Similar to the disper-
sionless rotation discussed above, quantum effects are
enhanced by the relativistic dynamics. The counter-
intuitive temporal and spatial structure of the control
shown in Fig. 2(b) is a manifestation of strong rel-
ativistic spin effects even at weak electric (|E| ∼ 106

V/m) and magnetic (B0 ∼ 1T) fields. In this case, the
bremsstrahlung energy loss is negligible compare to the
electron’s kinetic energy.

Integrable three dimensional solutions. Having demon-
strated the RDI’s ability to synthesize dynamics in two
spatial dimensions, we now turn to a challenging three
dimensional case. For the following confined stationary
state

Ψ = ei arcsin[f
′(z)]/2e−

eB0(x2+y2)
4~ −mcf(z)/~e−iεtσ3/~, (11)

RDI uncovers the underlying constant homogeneous
magnetic field B0 along the z direction and the static
electric potential

eA0 =
2mc(f ′(z)2 − 1)− ~f ′′(z)

2
√

1− f ′(z)2
,

where the energy of the state (11) is set to ε = 0, and
f(z) is an arbitrary real function. The obtained potential
has no non-relativistic limit.

A noteworthy feature of the state (11) is the spa-
tial dependence of the Yvon-Takabayashi angle β =
arcsin f ′(z), which is a signature of antiparticles repre-
sented by negative energy components in a wavepacket
(see, e.g., page 275 of Ref. [43]). The values of β lie
between −π and +π, where particles (i.e., positive en-
ergy) and antiparticles are associated with β = 0 and
β = ±π, respectively. From the point of view of Lorentz
transformations, the Yvon-Takabayashi angle is a degree
of freedom corresponding to the CPT conjugation [49]
that includes the time inversion t→ −t; hence, β is a pa-
rameter in the special Lorentz group not available in the
restricted Lorentz group. Moreover, this degree of free-
dom is absent from the nonrelativistic Pauli-Schrödinger
theory. Since f(z) controls the density of the state in
Eq. (11), the tighter the confinement along the z axis,
the higher the contribution of antiparticles.

In the particular case of f(z) =
√
ξ2 + z2, where ξ

determines the density spreading in z, the confining static

electric potential is the sum of soft-core Coulomb and
short range potentials

eA0 = − ξmc√
ξ2 + z2

− ξ~
2(ξ2 + z2)

. (12)

In Sec. V of Ref. [54], the space and time dependent
electromagnetic fields are obtained by RDI to yield the
dispersionless rotation of the state (11).
Exact solutions beyond electromagnetic interactions.

RDI is not restricted to the electromagnetic interactions.
The Dirac equation describing the scalar field V coupled
to the mass is cγµp̂µψ = (mc2 + V )ψ. This equation
describes a Fermion in gravitational fields [58], topolog-
ical materials [59], and quark models [60, 61]. Another
generalization of the Dirac equation involves nonlinear
interactions [62, 63], which can also be used to model
Bose-Einstein condensates [64].

Let us consider the following nonlinear interaction with
unspecified V

cγµp̂µψ = (mc2 + V + κ|ψ|2)ψ. (13)

Applying RDI to the following state

Ψ = eiπ/4e−mcz/~e−mcz
2/(ξ~)e−iεt/~σ3 , (14)

we find the scalar interaction V = 2mc2z/ξ −
κ
√

2mc
πξ~ e

−mc(2z+ξ)2/(2ξ~) by demanding the absence of

electromagnetic fields. Note that the state ψ is confined
in the potential V unbounded from above and below and,
even more surprisingly, in the presence of an additional
repulsive force emanating from the nonlinear term. This
is not possible in the non-relativistic limit. Another ex-
ample is presented in Sec. VI of Ref. [54]. These cases
extend a rather short list of analytic solutions of the Dirac
equation with scalar interaction [65–67]. Further explo-
rations reveal that RDI becomes more flexible by utiliz-
ing both scalar and electromagnetic interactions, opening
new possibilities for controlling quantum dynamics.
Outlook. We have developed RDI, a new framework

for analytically constructing electromagnetic fields con-
trolling the dynamics of the Dirac equation. RDI has also
been shown to be a flexible tool for discovering novel ex-
act solutions. In particular, we have shown how relativis-
tic coherent states could be constructed experimentally.
A scalar interaction coupled to the mass has been incor-
porated into RDI. This opens up prospects for quantum
technologies in new realms of physics and may further
expand the scope of control landscape analysis [68].

Since RDI relies on the matrix representation of the
dynamical group generated by an equation of motion, the
developed methodology may also be adaptable to other
dynamical equations [69]. In a similar fashion, RDI may
be used to yield exact solutions for non-abelian fermions
in the standard model [70] as well as curved spaces [71,
72] that are currently intractable.
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[24] S. Varró, Laser Physics Letters 10, 095301 (2013).
[25] I. Bialynicki-Birula, Phys. Rev. Lett. 93, 020402 (2004).
[26] J. Oertel and R. Schützhold, Phys. Rev. D 92, 025055

(2015).
[27] I. Kaminer, J. Nemirovsky, M. Rechtsman, R. Beken-

stein, and M. Segev, Nature Physics 11, 261 (2015).
[28] A. G. Hayrapetyan, O. Matula, A. Aiello, A. Surzhykov,

and S. Fritzsche, Phys. Rev. Lett. 112, 134801 (2014).
[29] I. Bialynicki-Birula and Z. Bialynicka-Birula, Phys. Rev.

Lett. 118, 114801 (2017).
[30] S. M. Barnett, Phys. Rev. Lett. 118, 114802 (2017).
[31] T. Heinzl and A. Ilderton, Phys. Rev. Lett. 118, 113202

(2017).
[32] V. Y. Lazur, O. Reity, and V. V. Rubish, Theoret. and

Math. Phys 143, 559 (2005).
[33] J. W. Braun, Q. Su, and R. Grobe, Phys. Rev. A 59, 604

(1999).
[34] G. R. Mocken and C. H. Keitel, Comput. Phys. Commun.

178, 868 (2008).
[35] H. Bauke and C. H. Keitel, Comput. Phys. Commun.

182, 2454 (2011).
[36] F. Fillion-Gourdeau, E. Lorin, and A. D. Bandrauk,

Comput. Phys. Commun. 183, 1403 (2012).
[37] F. Fillion-Gourdeau, E. Lorin, and A. Bandrauk, J. Com-

put. Phys. 307, 122 (2016).
[38] Q. Lv, S. Norris, Q. Su, and R. Grobe, J. Phys. B 49,

065003 (2016).
[39] R. Cabrera, A. G. Campos, D. I. Bondar, and H. A.

Rabitz, Phys. Rev. A 94, 052111 (2016).
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[41] R. Hammer, W. Pötz, and A. Arnold, J. Comput. Phys.

265, 50 (2014).
[42] W. E. Baylis, Phys. Rev. A 45, 4293 (1992).
[43] W. E. Baylis, ed., ”Clifford (geometric) algebras with

applications to physics, mathematics, and engineering”
(Birkhauser, 1996).

[44] D. Hestenes, J. Math. Phys. 8, 798 (1967).
[45] D. Hestenes, J. Math. Phys. 14, 893 (1973).
[46] D. Hestenes, J. Math. Phys. 16, 556 (1975).
[47] D. Hestenes, in Annales de la Fondation Louis de Broglie

(Fondation Louis de Broglie, 2003), vol. 28, p. 3.
[48] D. Hestenes, Found. Phys. 40, 1 (2010).
[49] P. Lounesto, Clifford algebras and spinors, vol. 286 (Cam-

bridge university press, 2001).
[50] C. Doran and A. Lasenby, Geometric algebra for physi-

cists (Cambridge Univ Pr, 2003).
[51] W. E. Baylis and Y. Yao, Phys. Rev. A 60, 785 (1999).
[52] W. E. Baylis, Electrodynamics: a modern geometric ap-

proach (Birkhauser, 1999).
[53] W. E. Baylis, R. Cabrera, and J. D. Keselica, Adv. Appl.

Clifford Al. 20, 517 (2010).
[54] See Supplemental Material at

*************************** for detailed deriva-
tions and discussions and further illustations.

[55] J. Yvon, J. Phys. Radium 1, 18 (1940).
[56] T. Takabayasi, Prog. Theor. Phys. Supp. 4, 1 (1957).
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