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A recent experiment reported the first violation of a Bell correlation witness in a many-body system
[Science 352, 441 (2016)]. Following discussions in this paper, we address here the question of the
statistics required to witness Bell correlated states, i.e. states violating a Bell inequality, in such
experiments. We start by deriving multipartite Bell inequalities involving an arbitrary number of
measurement settings, two outcomes per party and one- and two-body correlators only. Based on
these inequalities, we then build up improved witnesses able to detect Bell-correlated states in many-
body systems using two collective measurements only. These witnesses can potentially detect Bell
correlations in states with an arbitrarily low amount of spin squeezing. We then establish an upper
bound on the statistics needed to convincingly conclude that a measured state is Bell-correlated.

Introduction – Bell nonlocality, as revealed by the
violation of a Bell inequality, constitutes one of the
strongest forms of non-classicality [1, 2]. However, its
demonstration has long been restricted to systems in-
volving few particles [3–7]. Recently, the discovery of
multipartite Bell inequalities that only rely on one- and
two-body correlators opened up new possibilities [8]. Al-
though these inequalities have not yet lead to the real-
ization of a multipartite Bell test, they have been used
to derive witnesses able to detect Bell correlated states,
i.e. states capable of violating a Bell inequality [9, 10].

These witnesses have triggered two experiments [9, 11]
which successfully detect the presence of Bell correlations
in a many-body system under the assumption of gaussian
statistics [12, 13]. The witness used in Ref. [9, 11] involves
one- and two-body correlation functions and takes the
form W ≥ 0, where the inequality is satisfied by mea-
surements on states that are not Bell-correlated. Ob-
servation of a negative value for W then leads to the
conclusion that the measured system is Bell-correlated.
However, reaching such a conclusion in the presence of fi-
nite statistics requires special care [14, 15]. In particular,
an assessment of the probability with which a non-Bell-
correlated state could be responsible for the observed
data is required before concluding about the presence of
Bell correlations without further assumptions.

Concretely, the witness of Refs. [9] has the property
of admitting a quantum violation lower-bounded by a
constant Wopt < 0, while the largest possible value
Wmax > 0 is achievable by a product state and increases
linearly with the size of the system N . These properties
imply that a small number of measurement rounds on a
state of the form

ρ = (1− q)|ψ〉〈ψ|+ q(|↑〉〈↑|)⊗N , (1)

whereW(|ψ〉) =Wopt,W(|↑〉⊗N ) =Wmax and q is small,
is likely to produce a negative estimate ofW, even though

the state is not detected by the witness in the limit of in-
finitely many measurement rounds [9]. This state thus
imposes a lower bound on the number of measurement
rounds required to exclude, through such witnesses, all
non-Bell-correlated states with high confidence. Con-
trary to other assessments, this lower bound increases
with the number of particles involved in the many-body
system. Therefore, it is not captured by the standard de-
viation of one- and two-body correlation functions (which
on the contrary decreases as the number of particles in-
creases).

For small systems, this dependence of the number of
measurement rounds on the size of the measured system
merely represents a technical overhead: a conclusion may
still be obtained at the price of performing few more mea-
surements. For large systems, however, any bound on the
number of measurements that can be performed imposes
a hard limit on the maximal size of systems on which a
reliable conclusion can be drawn. The question of statis-
tical significance thus constitutes a fundamental question
for many-body systems.

It is worth noting that states of the form (1) put sim-
ilar bounds on the number of measurement rounds re-
quired to perform any hypothesis tests in a many-body
system satisfying the conditions above. This includes in
particular tests of entanglement [16–19] based on the en-
tanglement witnesses of Ref. [20–22].

In this article, we address this statistical problem in
the case of Bell correlation detection by providing a num-
ber of measurement rounds sufficient to exclude non-Bell-
correlated states from an observed witness violation. Let
us mention that in Refs. [9, 11], this finite statistics issue
is circumvented by the addition of an assumption on the
set of local states being tested. This has the effect of re-
ducing the scope of the conclusion: the data reported in
Refs. [9, 11], are only able to exclude a subset of all non-
Bell-correlated states (as pointed out in the references).
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Here, we show that such additional assumptions are not
required in experiments on many-body systems, and thus
argue that they should be avoided in the future.

In order to minimize the amount of statistics required
to reach our conclusion, we start by investingating im-
proved Bell correlation witnesses. For this, we first de-
rive Bell inequalities with two-body correlators and an
arbitrary number of settings. This allows us to obtain
Bell-correlation witnesses that are more resistant to noise
compared to the one known to date [9]. We then analyse
the statistical properties of these witnesses and provide
an upper bound on the number of measurement rounds
needed to rule out all local states in a many-body system.
We show that this upper bound is linear in the number
of particles, hence demonstrating the possibility of reli-
able detection of Bell correlations in systems with a large
number of particles.

Symmetric two-body correlator Bell inequalities with
an arbitrary number of settings – Multipartite Bell in-
equalities that are symmetric under exchange of par-
ties and which involve only one- and two-body correla-
tors have been proposed in scenarios where each party
uses two measurement settings and receives an outcome
among two possible results [8]. Similar inequalities were
also obtained for translationally invariant systems [23],
or based on Hamiltonians [24]. Here, we derive a similar
family of Bell inequalities that is invariant under arbi-
trary permutations of parties but allows for an arbitrary
number of measurement settings per party.

Let us consider a scenario in which N parties can

each perform one of m possible measurements M
(i)
k (k =

0, ...,m − 1; i = 1, ..., N) with binary outcomes ±1. We
write the following inequality:

IN,m =

m−1∑
k=0

αkSk +
1

2

∑
k,l

Skl ≥ −βc , (2)

where αk = m − 2k − 1, βc is the local bound, and the
symmetrized correlators are defined as

Sk :=

N∑
i=1

〈M (i)
k 〉 , Skl :=

∑
i6=j

〈M (i)
k M

(j)
l 〉 . (3)

Let us show that (2) is a valid Bell inequality for βc =⌊
m2N

2

⌋
, where bxc is the largest integer smaller or equal

to x. Below, we assume that m is even; see Appendix A
for the case of odd m.

Since IN,m is linear in the probabilities and local be-
haviors can be decomposed as a convex combination of
deterministic local strategies, the local bound of Eq. (2)
can be reached by a deterministic local strategy [1]. We
thus restrict our attention to these strategies and write

〈M (i)
k 〉 = xik = ±1 ⇒ Skl = SkSl −

N∑
i=1

xikx
i
l , (4)

where xik is the (deterministic) outcome party i produces
when asked question k. This directly leads to the follow-
ing decomposition:

IN,m =

m
2 −1∑
k=0

αk(Sk − Sm−k−1) +
1

2
B2 − 1

2
C ≥ −βc ,

(5)

with B :=
∑m−1
k=0 Sk and C :=

∑N
i=1

(∑m−1
k=0 xik

)2

. Due

to the symmetry under exchange of parties of this Bell
expression, it is convenient to introduce, following [8],
variables counting the number of parties that use a spe-
cific deterministic strategy:

aj1<...<jn : = #{i ∈ {1, ..., N}|xik = −1 iff k ∈ {j1, ..., jn}}
āj1<...<jn : = #{i ∈ {1, ..., N}|xik = +1 iff k ∈ {j1, ..., jn}}

n ≤ m

2
, āj1,...,jm

2
≡ 0 , (6)

where # denotes the set cardinality. Since each party
has to choose a strategy, the variables sum up to N :

∑
all variables

=

m
2∑

n=0

∑
j1<...<jn

(aj1...jn + āj1...jn) = N . (7)

The correlators can now be expressed as

Sk =

m
2∑

n=0

∑
j1<...<jn

(aj1...jn − āj1...jn) yj1...jnk , (8)

with yj1...jnk = −1 if k ∈ {j1, ..., jn}, and +1 otherwise.
The first term of (5) concerns the difference between

two correlators. Let us see how this term decomposes as a
function of the number of indices present in its variables.
From Eq. (8), it is clear that a variable with n indices only
appears in the difference Sk−Sl if yj1...jnk 6= yj1...jnl . But
the corresponding strategy only has n differing outcomes
and each correlator in this term only appears once, so
a variable with n indices appears in at most n of these
differences. Moreover, if it appears, it does so with a
factor ±2. The coefficient in front of a variable with n
indices in the first sum of (5) thus cannot be smaller than

−2
∑n−1
k=0 αk = 2n(n−m).

The second term of (5) can be bounded as B2 ≥ 0,
while the third one can be expressed as

C =

m
2∑

n=0

∑
j1<...<jn

(aj1...jn + āj1...jn) (m− 2n)2 . (9)

Putting everything together and using property (7), we
arrive at

IN,m ≥
m
2 −1∑
k=0

αk(Sk − Sm−k−1)− 1

2
C

≥ −m
2

2

∑
all variables

= −m
2N

2
= −βc , (10)
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which concludes the proof.
Note that this bound is achieved for a01...m2 −1 = N ,

i.e. when for each party exactly the first half of the m
measurements yields the result −1. Note also that the
Bell inequality (2) does not reduce to Ineq. (6) of Ref. [8]
when m = 2. Indeed, while none of these inequalities is
a facet of the local polytope, the latter one is a facet of
the symmetrized 2-body correlator local polytope [8, 25].

From Bell inequalities to Bell-correlation witnesses –
Let us now derive a set of Bell-correlation witnesses

assuming a certain form for the measurement operators.
Here, no assumptions are made on the measured state.

Following Ref. [9], we start from inequality (2) and

introduce spin measurements along the axes ~dk, k =
0, ...,m− 1, as well as the collective spin observables Ŝk:

M
(i)
k = ~dk · ~σ(i) , Ŝk =

1

2

N∑
i=1

M
(i)
k , (11)

where ~σ is the Pauli vector acting on a spin- 1
2 system.

The correlators can be expressed in terms of these total
spin observables and the measurement directions [8]:

Sk = 2〈Ŝk〉

Skl = 2
[〈
ŜkŜl

〉
+
〈
ŜlŜk

〉]
−N ~dk · ~dl . (12)

This defines the Bell operators

ŴN,m := 2

m−1∑
k=0

αkŜk + 2
∑
k,l

ŜkŜl −
N

2

∑
k,l

~dk · ~dl +

⌊
m2N

2

⌋
,

(13)

whose expectation values are positive for states that are
not Bell-correlated. Note that the expectation value
of these operators need not be negative for all Bell-
correlated states and every choice of measurement di-
rections, though. A negative value may only be achieved
for specific choices of states and measurement settings.

We now consider measurement directions ~dk =
~a cos(ϑk) + ~b sin(ϑk) lying in a plane spanned by two

orthonormal vectors ~a and ~b, with the antisymmetric
angle distribution ϑm−k−1 = −ϑk. Note that the co-
efficients αk share the same antisymmetry. Defining

Wm :=
〈
ŴN,m

2N̂

〉
for even m, we arrive at the following

family of witnesses:

Wm = Cb

m
2 −1∑
k=0

αk sin(ϑk)−
(
1− ζ2

a

)m
2 −1∑
k=0

cos(ϑk)

2

+
m2

4
,

(14)

with Wm ≥ 0 for states that are not Bell correlated.
These Bell correlation witnesses depend on m

2 angles
ϑk and involve just two quantities to be measured: the

FIG. 1: Plots of the critical lines Z2, Z4 and Z∞. The wit-
ness obtained from the Bell inequality with 4 settings already
provides a significant improvement over the case of 2 settings.
The black point in the inset shows the data point from [9],
with N = 476± 21.

scaled collective spin Cb :=
〈

Ŝ~b
N̂/2

〉
and the scaled second

moment ζ2
a :=

〈
Ŝ2
~a

N̂/4

〉
.

The tightest constraints on Cb and ζ2
a that allow for a

violation ofWm ≥ 0 are obtained by minimizingWm over
the angles ϑk. Solving ∂Wm

∂ϑk
= 0 yields (see Appendix B):

ϑk = − arctan[λm(m− 2k − 1)] , (15)

Cb
2λm(1− ζ2

a)
=

m
2 −1∑
k=0

cos(ϑk) . (16)

Equation (16) is a self-consistency equation for λm that
has to be satisfied in order to minimize Wm.

Using these parameters, we can rewrite our witness in
terms of the physical parameters Cb and ζ2

a only. For
two measurement directions (m = 2), we find that states
which are not Bell-correlated satisfy

ζ2
a ≥ Z2(Cb) =

1

2

(
1−

√
1− C2

b

)
. (17)

This recovers the bound obtained from a different in-
equality in [9]. Note that in the present case, the argu-
ment is more direct since it does not involve Ca, the first
moment of the spin operator in the a direction.

Increasing the number of measurement directions al-
lows for the detection of Bell correlations in additional
states. In the limit m→∞, we find (see Appendix B):

ζ2
a ≥ Z∞(Cb) = 1− Cb

artanh (Cb)
. (18)

Figure 1 shows the two witnesses (17) and (18) to-
gether with the one obtained similarly for m = 4 set-
tings in the Cb-ζ2

a plane. The curve Z∞ reaches the point
Cb = ζ2

a = 1, therefore allowing in principle for the de-
tection of Bell correlations in presence of arbitrarily low
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FIG. 2: Upper bound on the value of ζ2a required to see a
violation of the Bell correlation witness (18). The bound de-
pends on the number of particles N .

squeezing. It is known, however, that some values of Cb
and ζ2

a can only be reached in the limit of a large number
of spins [26]. For any fixed N , a finite amount of squeez-
ing is thus necessary in order to allow for the violation of
our witness (see Appendix C). The corresponding upper
bound on ζ2

a is shown in Figure 2.

Points below the curve Zm in Fig. 1 indicate a vio-
lation of the witness Wm ≥ 0 obtained from the cor-
responding m-settings Bell inequality. Violation of any
such bound reveals the presence of a Bell-correlated state.
However, as discussed in the introduction, conclusions in
the presence of finite statistics have to be examined care-
fully, since in practice, one can never conclude from the
violation of a witness that the measured state is Bell
correlated with 100% confidence. The point shown in
the inset of Fig. 1 corresponds to the data reported in
Ref. [9] from measurements on a spin-squeezed Bose-
Einstein condensate. This point clearly violates the wit-
nesses for m = 2, 4,∞ by several standard deviations,
although the number of measurement rounds is too small
to guarantee that the measured state is Bell correlated
without further assumptions [9].

Finite Statistics – In this section, we put a bound
on the number of experimental runs needed to exclude
with a given confidence that a measured state is not Bell-
correlated. Note that such a conclusion does not follow
straightforwardly from the violation of the witness by a
fixed number of standard deviations. Indeed, standard
deviations inform on the precision of a violation, but fail
at excluding arbitrary local models [15], including e.g.
models which may show non-gaussian statistics with rare
events. We thus look here for a number of experimental
runs which is sufficient to guarantee a p-value lower than
a given threshold for the null hypothesis ‘The measured
state is not Bell-correlated’. Since we are concerned with
the characterization of physical systems in the absence of
an adversary, we assume that the same state is prepared
in each round (i.i.d. assumption).

For this statistical analysis, let us consider a different

Bell correlation witness than (18). Indeed, we derived
this inequality in order to maximize the amount of vio-
lation for given data, but here we rather wish to max-
imize the statistical evidence of a violation. For this,
we take (14) and consider the representation of the an-
gles given in Eq. (15), but without taking Eq. (16) into
account. In the limit of infinitely-many measurement set-
tings, we find (see Appendix B)

Wstat = −Cb∆ν − (1− ζ2
a)Λ2

ν +
1

4
≥ 0 , with (19)

∆ν =

√
1 + ν2

4ν
−arsinh(ν)

4ν2
, Λν =

arsinh(ν)

2ν
, (20)

where ν = lim
m→∞

λm · m is a free parameter that fully

specifies the set of measurement angles.
In order to model the experimental evaluation ofWstat,

we introduce the following estimator:

T =
χ(Z = 0)

q
X +

χ(Z = 1)

1− q
Y + (

1

4
−∆ν − Λ2

ν) . (21)

Here, χ denotes the indicator function and the binary
random variable Z accounts for the choice between the
measurement of either Cb or ζa. Each measurement round
thus allows for the evaluation of the corresponding ran-
dom variables X = ∆ν(1 − Cb) or Y = Λ2

νζ
2
a . Assum-

ing that Z is independent of X and Y and choosing
q = P [Z = 0] guarantees that T is a proper estima-
tor of Wstat, i.e. 〈T 〉 = W. q then corresponds to the
probability of performing a measurement along the b axis.

We choose q =
(

1 +
Λ2
νN

2∆ν

)−1

so that the contributions

of both measurement choices to T have the same magni-
tude, i.e. the maximum values of X/q and Y/(1− q) are
equal within the domain |Cb| ≤ 1 and ζ2

a ∈ [0, N ]. This
also guarantees that the spectrum of T matches that of
Wstat.

Suppose the measured state is non-Bell-correlated, i.e.
that its mean value µ = 〈T 〉 = Wstat ≥ 0. We are now
interested in the probability that after M experimental
runs the estimated value T = 1

M

∑M
i=1 Ti of the witness

Wstat falls below a certain value t0 < 0, with Ti being
the value of the estimator in the ith run.

In statistics, concentration inequalities deal with ex-
actly this issue. In Appendix D, we compare four of
these inequalities, namely the Chernoff, Bernstein, Us-
pensky and Berry-Esseen ones [27] and show explicitly
that in the regime of interest the tightest and therefore
preferred bound results from the Bernstein inequality:

P [T ≤ t0] ≤ exp

(
− (µ− t0)2M

2σ2
0 + 2

3 (tu − tl)(µ− t0)

)
≤ ε .

(22)

Here, t0 is the experimentally observed value of T after
M measurement rounds, tl = 1

4 − ∆ν − Λ2
ν and tu =

1
4 + ∆ν + Λ2

ν(N + 1) are lower and upper bounds on the
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FIG. 3: Number of experimental runs per spins required to
rule out non-Bell-correlated states with a confidence of 1− ε
as a function of Cb and ζa. For Cb = 0.98 and ζ2a = 0.272 (as
reported in [9]), approximately 17 · ln(100) ' 80 runs per spin
are sufficient to reach a confidence level of 99%.

random variable T respectively, and σ2
0 is its variance for

a local state.
We show in Appendix D that the largest p-value is

obtained by setting µ = 0 and σ2
0 = −tltu. A number

of measurement rounds sufficient to exclude the null hy-
pothesis with a probability larger than 1−ε is then given
by:

M ≥
−2tltu − 2

3 (tu − tl)t0
t20

ln

(
1

ε

)
. (23)

This quantity can be minimized by choosing the free pa-
rameter ν appropriately. As shown in Appendix D, opti-
mizing ν at this stage allows us to reduce the number of
measurement rounds by ∼30%. It is thus clearly advan-
tageous not to consider the witness (18) when evaluating
statistical significance.

The number of runs in (23) depends linearly on tl and
therefore also linearly on N . The ratio M

N thus tends to a
constant for large N (see Appendix D for more details).
This implies that a number of measurement rounds grow-
ing linearly with the system size is both necessary and
sufficient to reliably conclude that the measured state is
Bell correlated [9].

Figure 3 depicts the required number of measurement
rounds per spin as a function of the scaled collective spin
Cb and the scaled second moment ζ2

a . For a confidence
level of 1− ε = 99%, between 20 and 500 measurement
rounds per spin are required in the considered parameter
region.

Conclusion – In this paper, we started by introduc-
ing a class of multipartite Bell inequalities involving two-
body correlators and an arbitrary number of measure-
ment settings. Assuming collective spin measurements,
these inequalities give rise to the witness (18), which can
be used to determine whether Bell correlations can be
detected in a many-body system. This criterion detects
states that were not detected by the previously-known
witness [9].

We then discussed the role of finite statistics in ex-
periments involving many-body systems. We provided a
bound, Eq. (23), on the number of measurement rounds
that allows one to detect Bell-correlated states without
further assumptions. This bound shows that all non-
Bell-correlated states can be convincingly ruled out at
the cost of performing a number of measurement rounds
that grows linearly with the system size. This puts the
detection of quantum correlations in many-body systems
on firm grounds and opens the way for a possible use of
many-body systems in the context of device-independent
quantum information processing.
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