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No thermalization without correlations1
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2Princeton University, Princeton, NJ 08544, USA4

The proof of the long-standing conjecture is presented that Markovian quantum master equa-
tions are at odds with quantum thermodynamics under conventional assumptions of fluctuation-
dissipation theorems (implying a translation invariant dissipation). Specifically, except for identified
systems, persistent system-bath correlations of at least one kind, spatial or temporal, are obliga-
tory for thermalization. A systematic procedure is proposed to construct translation invariant bath
models producing steady states that well-approximate thermal states. A quantum optical scheme
for the laboratory assessment of the developed procedure is outlined.

Introduction. A stochastic interaction of a quantum5

system with a bath brings up the term F̂ fr in the re-6

lations for time-dependent expectation values of system7

momenta p̂={p̂1, . . . , p̂N} and positions x̂={x̂1, . . . , x̂N}:8

d
dt

〈p̂n〉=−〈 ∂
∂x̂n

U(x̂)〉+ 〈F̂ fr
n 〉, (1a)

d
dt
〈x̂n〉= 1

mn
〈p̂n〉, (1b)

where U(x̂) is a potential energy operator and mk are9

effective masses. In this Letter, we study the case10

where F̂ fr=F̂ fr(p̂) is position-independent. In this form,11

Eqs. (1) apply to many quantum phenomena including12

the translational motion of an excited atom in vacuum13

[1], light-driven processes in semiconductor, nanoplas-14

monic and optomechanical systems [2–4], superconduct-15

ing currents [5], quantum ratchets [6], energy transport16

in low-dimensional systems [7], dynamics of chemical re-17

actions [8], two-dimensional vibrational spectroscopy and18

NMR signals [9, 10] as well as more exotic entirely quan-19

tum dissipative effects [11, 12].20

The term F̂ fr(p̂) in Eqs. (1) admits a simple classi-21

cal interpretation as friction acting on effective parti-22

cles moving in a potential U(x). Such classical dynam-23

ics are described by the familiar Langevin, Drude and24

Fokker-Plank models when the system-bath interactions25

are treated as (i) memoryless (Markovian) and (ii) trans-26

lation invariant (position-independent). However, we27

will show that these two assumptions are at odds with28

quantum thermodynamics. Specifically, we will prove29

a long-standing no-go conjecture that completely posi-30

tive1 Markovian translation-invariant quantum dynamics31

obeying Eqs. (1) cannot thermalize.32

The no-go conjecture was demonstrated by Lindblad33

as early as in 1976 [14] for a quantum harmonic oscil-34

lator with a Gaussian damping2. Subsequently his par-35
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1 Positivity of quantum evolution guarantees satisfaction of the
Heisenberg uncertainty principle at all times. It was shown that
the requirements for positivity and complete positivity coincide
for some quantum systems including a harmonic oscillator [13].

2 The Gaussian damping corresponds to Lrel=Llbd
µx̂+ηp̂

(µ,η ∈

CN ) in Eq. (2a) and can be cast to form (3), as shown in Sec. I
of Ref. [15]). The original paper [14] deals with one-dimensional
case. The multidimensional extension can be found e.g. in [16].

ticular result was extended to a general quantum sys-36

tem under the weight of mounting numerical evidence,37

however without proof. The no-go conjecture is de-facto38

incorporated in all popular models such as the Red-39

field theory [17], the Gaussian phase space ansatz of40

Yan and Mukamel [18], the master equations of Agar-41

wal [19], Caldeira-Leggett [20], Hu-Paz-Zhang [21], and42

Louisell/Lax [22], and the semigroup theory of Lindblad43

[23] along with specialized extensions in different areas44

of physics and chemistry. These models break either one45

of assumptions (i) and (ii) or the complete positivity of46

quantum evolution (see [13, 24, 25] for detailed reviews,47

note errata [26]). This circumstance is a persistent source48

of controversies (see e.g. the discussions [27–29] of origi-49

nal works [30, 31]). The matters were further complicated50

by the discovery that the free Brownian motion U(x̂)=051

circumvents the conjecture [32] (we will identify the full52

scope of possible exceptions below).53

The no-go result challenges studies of the long-time dy-54

namics of open systems. On the one hand, model’s ther-55

modynamic consistency is undermined by assumptions56

(i) and (ii). On other hand, the same assumptions open57

opportunities to simulate large systems that are other-58

wise beyond the reach. Specifically, the abandonment59

of Markovianity entails a substantial overhead to store60

and process the evolution history. The value of assump-61

tion (ii) can be clarified by the following example. Con-62

sider the re-thermalization of a harmonic oscillator cou-63

pled to a bath (represented by a collection of harmonic64

oscillators) after displacement from equilibrium by, e.g.,65

an added external field, a varied system-bath coupling,66

or interactions between parts of a compound system.67

To account for such a displacement without assump-68

tion (ii), one needs to self-consistently identify the equi-69

librium position for each bath oscillator, re-thermalize70

the bath and modify the system-bath couplings accord-71

ingly. In practice, this procedure is intractable with-72

out gross approximations that lead to either numerical73

instabilities or physical inaccuracies. Choosing among74

a polaron-transformation-based method, Redfield, and75

Förster (hopping) models of quantum transfer epitomizes76

this dilemma [33].77

Remarkably, assumption (ii) enables to model the dis-78

placed state equilibrium by simply adjusting the po-79
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Figure 1. The errors (expressed in the terms of Bures

distance DB between the thermal state ρ̂thθ and its approx-
imation ρ̂st) in modeling thermal states of a 1D quantum
harmonic oscillator in the displaced equilibrium configura-
tions (due to a change U(x̂)→U(x̂−∆x0) in the potential en-
ergy) using the conventional quantum optical master equation
(dashed lines) and the proposed translation-invariant dissipa-
tion model defined by Eqs. (2),(3) and (11) (solid lines). (a)
The error dependence on displacement ∆x0 for several tem-
peratures θ. (b) The error dependence on temperature θ for

different values of κ (in units of κ0=~
−1β−

1
2 ).

tential energy Û . Fig. 1a shows that without this as-80

sumption the potential adjustment yields steady state81

ρ̂st significantly different from the canonical equilibrium82

ρ̂thθ ∝e−
Ĥ

θ , where θ=kBT and Ĥ is system Hamiltonian.83

Motivated by these arguments, we propose in this Let-84

ter a general recipe to construct approximately thermal-85

izable bath models under assumptions (i) and (ii). Fig. 186

illustrates this recipe in application to the above exam-87

ple. The resulting mismatch between ρ̂st and ρ̂thθ is small,88

especially at high temperatures and in the weak system-89

bath coupling limit. (The calculations details will be ex-90

plained below.)91

It will be shown elsewhere that the proposed recipe is92

capable of accurately accounting for electronic and spin93

degrees of freedom. We found it helpful in reservoir en-94

gineering and optimal control problems. Moreover, the95

resulting bath models are realizable in the laboratory and96

can be used for coupling atoms and molecules nonrecipro-97

cally [34]. However, the scope of our recipe is limited by98

the applicability of assumptions (i) and (ii) and, there-99

fore, cannot encompass strongly correlated systems (as100

in the case of Anderson localization [35]).101

The key results. Starting by formalizing the problem,102

we write the general master equation that accounts for103

memoryless system-bath interactions and ensures posi-104

tivity of the system density matrix ρ̂ at all times [23]:105

∂
∂t

ρ̂=L[ρ̂], L=L0+Lrel, (2a)

L0[⊙]= i
~
[⊙, Ĥ ], Ĥ=H(p̂, x̂)=

∑N

n=1
p̂2
n

2mn
+U(x̂), (2b)

Lrel=

K
∑

k=1

L
lbd
L̂k

, L
lbd
L̂

[ρ̂]
def
= L̂ρ̂L̂†−1

2 (L̂
†L̂ρ̂+ρ̂L†L̂), (2c)

where ⊙ is the substitution symbol defined, e.g., in [36].106

The superoperator Lrel accounts for system-bath cou-107

plings responsible for the friction term F̂ fr in Eq. (1a)108

and depends on a set of generally non-Hermitian oper-109

ators L̂k. Based on theorems by A. Holevo [37, 38], B.110

Vacchini [39–41] has identified the following criterion of111

translational invariance for the Lrel:112

Lemma 1 (The justification is in Sec. I of Ref. [15]).113

Any translationally invariant superoperator Lrel of the114

Lindblad form (2c) can be represented as115

Lrel=
∑

k L
lbd
Âk

+Laux with (3a)

Âk
def
=e−iκkx̂f̃k(p̂), Laux=−i[µauxx̂+faux(p̂),⊙]. (3b)

where κk and µaux are N -dimensional real vectors, f̃k are116

complex-valued functions and faux is real-valued 3 .The117

converse holds as well.118

The primary findings of this work are summarized in119

the following two no-go theorems.120

No-go theorem 1. Let |Ψ0〉 be the ground state (or121

any other eigenstate of Ĥ), such that 〈Ψ0|p̂ |Ψ0〉=0,122

and which momentum-space wavefunction Ψ0(p)=〈p|Ψ0〉123

is nonzero almost everywhere, except for some isolated124

points. Then, no translationally invariant Markovian125

process of form (2) and (3) can steer the system to |Ψ0〉.126

The idea of the proof, whose details are given127

in Sec. II of Ref. [15], is to show that the state128

ρ̂0= |Ψ0〉〈Ψ0| can be the fixed point of superopera-129

tor etL only if Lrel≡0. First, note that the linearity130

and translation invariance of the dissipator (3) imply131

that Lrel[
∫

g(x′)e−
i

~
x′p̂ρ̂0e

i

~
x′p̂dNx′]=0 for any function132

g(x′). This equation can be equivalently rewritten as133

Lrel[Ψ0(p̂)g(x̂)Ψ0(p̂)
†]=0 (4)

using the identities e−
i

~
x′p̂ |Ψ0〉=

√
2π~Ψ0(p̂) |x′〉 and134

∫

g(x′) |x′〉〈x′| dNx′=g(x̂), where |x′〉 is the eigenstate135

of position operator: x̂k |x′〉=x′
k |x′〉. Let us choose136

g(x)=e−iλx, where λ is an arbitrary real vector, and137

move to the right the x̂-dependent terms in the lhs138

of Eq. (4) using the commutation relations e−iλ̃x̂p̂ =139

(p̂+~λ̃)e−iλ̃x̂ with λ̃=λ,±κk. This rearrangement140

brings Eq. (4) to the form G̃λ(p̂)e
−iλx̂=0 (note that all141

the operators of form e±iκ̃kx̂ expectedly cancel out ow-142

ing to translation invariance of Lrel). The last equality143

can be satisfied only if the function G̃λ(p) vanishes iden-144

tically for all p and λ. However, careful inspection of145

Sec. II of Ref. [15] shows that the latter happens only if146

Lrel=0.147

The statement of the 1-st no-go theorem can be148

strengthened for a special class of quantum systems. Let149

3 The Gaussian dissipatorsLlbd
µkx̂+f̃G

k
(p̂)

(µk∈R
N ) can be reduced

to the form Eq. (3) as a limiting case κk→0, as shown in Sec. I
of Ref. [15]. The generalized unitary drift term Laux accounts
for ambiguity of the separation of the quantum Liouvillian L in
Eq. (2a) into Hamiltonian and relaxation parts.
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B(p,λ) be the Blokhintsev function [42], which is related150

to Wigner quasiprobability distribution W (p,x) as151

B(p,λ)=
∫∞

−∞
. . .

∫∞

−∞
eiλxW (p,x) d

N
x. (5)

No-go theorem 2. Suppose that the Blokhintsev func-152

tion Bθ(p,λ) of the thermal state ρ̂thθ ∝e−
Ĥ

θ characterized153

by temperature kBT=θ is such that154

∀p,λ : Bθ(p,λ)>0, Bθ(p,−λ)=Bθ(p,λ), (6a)

∀p 6=0,λ 6=0 : Bθ(p,λ)<Bθ(0,0). (6b)

Then, no translationally invariant Markovian process (2)155

and (3) can asymptotically steer the system to ρ̂thθ .156

The proof of this theorem is given in Sec. III of157

Ref. [15] and generally follows the same logic as the out-158

lined proof of the 1-st no-go theorem. Using Eq. (5) and159

the familiar formula for the thermal state Wigner func-160

tion [43], it is easy to check that the criteria (6) are satis-161

fied for any θ in the case of a quadratic potential U . This162

means that the Lindblad’s original conclusion on inabil-163

ity to thermalize the damped harmonic oscillator using164

the Gaussian friction term Lrel=L
lbd
µx̂+ηp̂ is equally valid165

for all Markovian translationally invariant dissipators.166

Corollary 2.1. No translationally invariant Markovian167

process of form (2) and (3) can steer the quantum har-168

monic oscillator into a thermal state of form ρ̂thθ ∝e−
Ĥ

θ .169

Practical implications of the no-go theorems. In clas-170

sical thermodynamics, the bath is understood as a171

constant-temperature heat tank “unaware” of a system172

of interest. However, the no-go theorems indicate that173

system-bath correlations of at least one kind – spa-174

tial or temporal – become obligatory for thermalization175

once quantum mechanical effects are taken into account.176

These correlations break the bath translation invariance177

or Markovianity assumptions, respectively.178

Nevertheless, in the view of computational advantages179

outlined above, it is desirable to incorporate these as-180

sumptions into the master equations (2) and (3). Now we181

are going to introduce the recipe to construct such mod-182

els with a minimal error in the thermal state. In order183

to proceed, note that in the limit (~κk)
2≪〈p̂2〉 Eqs. (2)184

and (3) reduce to the familiar Fokker-Planck equation185

d
dt
̟(p)≃Tr[δ(p−p̂)L0[ρ̂]]+

∑

n,l

∂2Dn,l(p)̟(p)

∂pn∂pl
−
∑

n

∂F fr
n (p)̟(p)

∂pn
(7)

for the momentum probability distribution186

̟(p)=Tr[δ(p−p̂)ρ̂]. The friction forces F fr in Eq. (7)187

as well as Eq. (1a) have the form188

F fr(p̂)=−
∑

k ~κk|f̃k(p̂)|2, (8)

whereas the momentum-dependent diffusion operator is189

Dn,l(p̂)=
~
2

2

∑

k |f̃k(p̂)|2κk,nκk,l. (9)

Equations (8) and (9) can be satisfied by different sets190

of κk and f̃k(p). We will exploit this non-uniqueness191

to reduce the system-bath correlation errors. Our strat-192

egy is reminiscent to the familiar way of making den-193

sity functional calculations practical via error cancella-194

tion in approximated exchange-correlation functionals.195

We shall demonstrate the generic procedure by consid-196

ering a one-dimensional oscillator with the Hamiltonian197

Ĥ=m
2 p̂

2+mω2

2 x̂2 (here the dimension subscript n is omit-198

ted for brevity). Corollary 2.1 implies that Lrel[ρ̂
th
θ ] 6=0199

and ρ̂st 6=ρ̂thθ for any θ, where ρ̂st= ρ̂|t→∞ is the actual200

fixed point of the evolution operator etL. However, the201

net discrepancies can be reduced by imposing the follow-202

ing thermal population conserving constraint:203

d
dt
〈e−αĤ〉θ

∣

∣

∣

t=0
=0;

∣

∣

∣

d2

dt2
〈e−αĤ〉θ

∣

∣

∣

t=0
→min for all α,

(10)

where 〈⊙〉θ(t)=Tr[⊙etL[ρ̂thθ ]]. This constraint can be204

intuitively justified when the characteristic decay rates205

are much smaller than the typical transition frequen-206

cies, such that the dissipation can be treated per-207

turbatively. Since the term Lrel[ρ̂
th
θ ] generates only208

rapidly oscillating off-diagonal elements in the basis209

of Ĥ , Eq. (10) ensures that the first-order perturba-210

tion vanishes on average for the exact thermal state:211

limt→∞
1
t

∫ t

0 e
τL0Lrele

(t−τ)L0[ρ̂thθ ] dτ=0.212

In the case of the driftless dissipation Laux=0, Eq. (10)213

is satisfied by the following functions f̃k(p) in Eq. (3):214

f̃k(p)=cke
pβ~λk , λk=κk tanh(

~ω
4θ ), (11)

where β=(m~ω)−1 and the constants ck should be cho-215

sen to satisfy Eq. (8). The corresponding dissipator (3)216

reproduces the familiar microphysical model of quantum217

Brownian motion (see e.g. Eq. (16) in Ref. [32]) in the218

limit κ→0, ω→0. Furthermore, the resulting dynamics219

tends to decrease (increase) the average system energy220

〈Ĥ〉θ if its initial temperature θ′ is higher (lower) than θ:221

∂
∂t

〈Ĥ〉θ′

∣

∣

t=0
=

c2
k

ω
γ̃en
k (θ′, θ)(〈Ĥ〉θ −〈Ĥ〉θ′)

∣

∣

t=0
, (12)

where γ̃en
k (θ′, θ)=2ωβ~2κkλk exp

(

β~2λ2
kcoth(

~ω
2θ′

)
)

>0.222

Equation (12) suggests that ρ̂st is close to ρ̂thθ . This223

conclusion is supported by the simulations presented in224

Fig. 2a for the isotropic dissipator Lrel=B
κ,f̃ iso ,225

B
κ,f̃ iso

def
=L

lbd
Â+

+L
lbd
Â−

, Â±=e∓iκx̂f̃ iso(±p̂). (13)

One can see that the high-quality thermalization is read-226

ily achieved by tuning the free parameters ck and κk even227

in the strong dissipation regime.228229

To understand the result (11), note that the terms230

Llbd
Âk

in Eq. (3) represent independent statistical forces231

〈−~κk|f̃k(p̂)|2〉 contributing to the net friction 〈F̂ fr〉. In232

classical mechanics, such forces at θ=0 steer the system233



4

Figure 2. (a) The accuracy of thermalization of the harmonic
oscillator at θ=0 by the dissipator Lrel=ΓB

κ,f̃ iso as function

of κ and Γ. The solid curves show the Bures distance DB be-
tween the thermal state ρ̂thθ and its approximation ρ̂st for the
case f̃ iso(p) defined by Eq. (11) with c=ω/

√

γ̃en(0, 0). The

dotted curves represent the clipped versions (14) of f̃ iso(p).

The dashed curves correspond to the case of functions f̃ iso(p)
approximated by Eq. (16) with parameters c̃i chosen such that
∂l

∂pl
(f̃ iso(p)−g̃iso(p))

∣

∣

∣

p=0
=0 for l=0, 1, 2. (b) The Doppler

cooling setup to test the model (2), (3) in the laboratory.

to the state of rest by acting against the particles’ mo-234

menta, hence235

f̃k(p̂)=0 when pκk<0 (classical mechanics). (14)

However, clipping the functions (11) according to236

Eq. (14) introduces significant errors, as displayed by dot-237

ted curves in Fig. 2a. Thus, the “endothermic” tails of238

f̃k(p̂) at pκk>0 break the thermalization in the classi-239

cal case, but reduce errors in the quantum mechanical240

treatment. To clarify this counterintuitive observation,241

note that the physical requirement d
dt
〈Ô〉θ =0 for any242

observable Ô in the thermodynamic equilibrium ρ̂st=ρ̂thθ243

is violated by the master equations (2) and (3) due to244

the no-go theorems, i.e.,245

∂
∂t

〈x̂2
n〉θ

∣

∣

∣

∣

t=0

=~
2
∑

k

〈
∣

∣

∂
∂p̂n

f̃k(p̂)
∣

∣

2〉
θ

∣

∣

∣

∣

t=0

>0 (15)

in the driftless case Laux=0. The inequality (15) pro-246

vides further evidence for the no-go theorems and is the247

hallmark of the “position diffusion”, a known artifact in248

the quantum theory of Brownian motion [41].249

According to Eq. (15), ∂
∂t

〈x̂2〉θ
∣

∣

t=0
is sensitive to250

smoothness of f̃k(p). Specifically, the rhs of Eq. (15)251

is exploded by any highly oscillatory components of252

f̃k(p) and diverges if f̃k(p) is discontinuous. This en-253

tirely quantum effect is the origin of poor performance254

of the clipped solutions (14) seen in Fig. 2a. Equa-255

tion (15) uncovers unavoidable errors in the poten-256

tial energy. The optimal solutions (11) enforce error257

cancellation ∂
∂t

〈 p̂2

2m 〉
θ

∣

∣

t=0
=− ∂

∂t
〈U(x̂)〉θ

∣

∣

t=0
between ki-258

netic and potential energies leaving the total energy in-259

tact ∂
∂t

〈Ĥ〉θ
∣

∣

t=0
=0. In fact, the error cancellation is260

achieved with a large class of physically feasible func-261

tions f̃k(p) that may substantially differ from the solu-262

tions (11) everywhere but the region of high probability263

density ̟(p)=Tr[δ(p̂−p)ρ̂thθ ] (however, note the remark264

in Sec. IV of Ref. [15]). This is illustrated in Fig. 2a by265

dashed curves overlapping with solid curves.266

The master equations (2) and (3) provide accurate267

non-perturbative description of collisions with a back-268

ground gas of atoms or photons [4, 40, 44–46]. Hence,269

the above theoretical conclusions can be directly tested270

in the laboratory using well-developed techniques, e.g.,271

the setup shown in Fig. 2b. Here a two-level atom is272

subject to two orthogonally polarized counterpropagat-273

ing monochromatic nonsaturating laser fields of the same274

amplitude E and frequency ωl. We show in Sec. IV of275

Ref. [15] that the translational motion of the atom can276

be modeled using Eq. (2) with an isotropic friction term277

of form Lrel=B
κ,g̃iso . Here278

κ=
ωl
c
, g̃iso(p)=c̃1(c̃

2
2+(p−c̃3)

2)−
1
2 , c̃k∈R (16)

and the parameters c̃k can be tuned by E and ωl.279

Now we are ready to clarify why the deviations from280

canonical equilibrium increase with |κ| in Fig. 2a. The281

parameters ~|κ| and g̃iso(p)2 in Eq. (16) can be regarded282

as the change of atomic momentum after absorption of283

a photon and the absorption rate. The case of small284

~|κ|≪
√

〈p̂2〉 and large g̃iso(p)2 implies tiny and frequent285

momentum exchanges subject to the central limit the-286

orem. The net result is a velocity-dependent radiation287

pressure with vanishing fluctuations. The opposite case288

of large ~|κ|≫
√

〈p̂2〉 and small g̃iso(p)2 is the strong shot289

noise limit, where the stochastic character of light ab-290

sorption is no longer averaged out, notably perturbing291

the thermal state. Note that a similar interpretation ap-292

plies to quantum statistical forces in Ref. [47].293

The dissipative model (2) and (3) with optimized pa-294

rameters (11) is further analyzed in Fig. 1 using the same295

parameters as in Fig. 2a. Both Figs. 1 and 2a indicate296

that thermalization can be modeled for a wide range297

of recoil momenta ~κ ∈
(

−(~
√
β)−1, (~

√
β)−1

)

and the298

higher the temperature, the better the accuracy. Thus,299

Eqs. (8) and (9) enable to simulate a variety of velocity300

dependences of friction and diffusion.301

Finally, Fig. 1a benchmarks such simulations against302

the commonly used quantum optical master equa-303

tion (QOME) [48] defined by Eq. (2c) with K=2,304

L̂1=
√
2Γω(1−e−

~ω

θ )−
1
2 â, L̂2=

√
2Γω(e

~ω

θ −1)−
1
2 â†, where305

â is the harmonic oscillator annihilation operator. For306

a correct comparison, the parameters of both models307

are adjusted to ensure identical decay rates in Eq. (12).308

Systematic errors in our model and QOME are compa-309

rable for the equilibrium displacements ∆x0∼~β− 1
2 at310

zero temperature and ∆x0∼0.1~β− 1
2 for θ∼~ω. For low-311

frequency molecular vibrational modes (m∼104 atomic312

units, ω∼200 cm−1), these shifts are of order 0.4 Å and313

0.04 Å, respectively, which are in the range of typical314

molecular geometry changes due to optical excitations315
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or liquid environments. We found the displacement-316

independent errors in the model (2) and (3) to be very317

important for quantum control via reservoir engineering.318

Furthermore, the same feature can also be exploited for319

engineering the mechanical analogs of nonreciprocal opti-320

cal couplings [49] and energy-efficient molecular quantum321

heat machines [34]. These subjects will be explored in a322

forthcoming publication.323
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