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No thermalization without correlations

Dmitry V. Zhdanov,"'[] Denys 1. Bondar,? and Tamar Seideman’

! Northwestern University, FEvanston, IL 60208, USA
2 Princeton University, Princeton, NJ 08544, USA

The proof of the long-standing conjecture is presented that Markovian quantum master equa-
tions are at odds with quantum thermodynamics under conventional assumptions of fluctuation-
dissipation theorems (implying a translation invariant dissipation). Specifically, except for identified
systems, persistent system-bath correlations of at least one kind, spatial or temporal, are obliga-
tory for thermalization. A systematic procedure is proposed to construct translation invariant bath
models producing steady states that well-approximate thermal states. A quantum optical scheme
for the laboratory assessment of the developed procedure is outlined.

Introduction. A stochastic interaction of a quantum
system with a bath brings up the term F in the re-
lations for time-dependent expectation values of system

momenta p={p1, ..., pn} and positions z={&1, ...,y }:
& (Pn) == (LU @) +(FY), (1a)
% (Zn) :an (Pn), (1b)

where U(&) is a potential energy operator and my, are
effective masses. In this Letter, we study the case
where F"=F(p) is position-independent. In this form,
Egs. (@) apply to many quantum phenomena including
the translational motion of an excited atom in vacuum
@], light-driven processes in semiconductor, nanoplas-
monic and optomechanical systems Ng—@], superconduct-
ing currents ﬂﬂ], quantum ratchets [6], energy transport
in low-dimensional systems [7], dynamics of chemical re-
actions B], two-dimensional vibrational spectroscopy and
NMR signals ﬂQ, @] as well as more exotic entirely quan-
tum dissipative effects [11, [19).

The term FT(p) in Eqgs. () admits a simple classi-
cal interpretation as friction acting on effective parti-
cles moving in a potential U(x). Such classical dynam-
ics are described by the familiar Langevin, Drude and
Fokker-Plank models when the system-bath interactions
are treated as (i) memoryless (Markovian) and (ii) trans-
lation invariant (position-independent). However, we
will show that these two assumptions are at odds with
quantum thermodynamics. Specifically, we will prove
a long-standing no-go conjecture that completely posi-
tivd] Markovian translation-invariant quantum dynamics
obeying Eqs. ([l) cannot thermalize.

The no-go conjecture was demonstrated by Lindblad
as early as in 1976 ﬂﬂ] for a quantum harmonic oscil-
lator with a Gaussian dampingd. Subsequently his par-
* dm.zhdanov@gmail.com

1 Positivity of quantum evolution guarantees satisfaction of the
Heisenberg uncertainty principle at all times. It was shown that
the requirements for positivity and complete positivity coincide
for some quantum systems including a harmonic oscillator ]

2 The Gaussian damping corresponds to 2r01=$§£+,’7ﬁ (n,m €
CVN) in Eq. (a) and can be cast to form (@), as shown in Sec. [l

of Ref. [15]). The original paper [14] deals with one-dimensional
case. The multidimensional extension can be found e.g. in }
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ticular result was extended to a general quantum sys-
tem under the weight of mounting numerical evidence,
however without proof. The no-go conjecture is de-facto
incorporated in all popular models such as the Red-
field theory ﬂﬂ the Gaussian phase space ansatz of
Yan and Mukamel ﬂE the master equations of Agar-
wal [19], Caldeira-Leggett [20], Hu-Paz-Zhang [21], and
Louisell/Lax [22], and the semigroup theory of Lindblad

| along with specialized extensions in different areas
of physics and chemistry These models break either one
of assumptions |(i)| and [] or the complete positivity of
quantum evolution (see @ for detailed reviews,
note errata HE]) This cmcumstanee is a persistent source
of controversies (see e.g. the discussions [27-29] of origi-
nal works [30,31]). The matters were further complicated
by the discovery that the free Brownian motion U(&)=0
circumvents the conjecture [32] (we will identify the full
scope of possible exceptions below).

The no-go result challenges studies of the long-time dy-
namics of open systems. On the one hand, model’s ther-
modynamic consistency is undermined by assumptions
and On other hand, the same assumptions open
opportunities to simulate large systems that are other-
wise beyond the reach. Specifically, the abandonment
of Markovianity entails a substantial overhead to store
and process the evolution history. The value of assump-
tion can be clarified by the following example. Con-
sider the re-thermalization of a harmonic oscillator cou-
pled to a bath (represented by a collection of harmonic
oscillators) after displacement from equilibrium by, e.g.,
an added external field, a varied system-bath coupling,
or interactions between parts of a compound system.
To account for such a displacement without assump-
tion one needs to self-consistently identify the equi-
librium position for each bath oscillator, re-thermalize
the bath and modify the system-bath couplings accord-
ingly. In practice, this procedure is intractable with-
out gross approximations that lead to either numerical
instabilities or physical inaccuracies. Choosing among
a polaron-transformation-based method, Redfield, and
Forster (hopping) models of quantum transfer epitomizes
this dilemma ﬂé]

Remarkably, assumption enables to model the dis-
placed state equilibrium by simply adjusting the po-
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Figure 1.
distance Dp between the thermal state ﬁgh and its approx-
imation pgst) in modeling thermal states of a 1D quantum
harmonic oscillator in the displaced equilibrium configura-
tions (due to a change U(2)—U(Z—Axo) in the potential en-
ergy) using the conventional quantum optical master equation
(dashed lines) and the proposed translation-invariant dissipa-
tion model defined by Egs. [@),3) and () (solid lines). (a)
The error dependence on displacement Axo for several tem-
peratures 0. (b) The error dependence on temperature 6 for

The errors (expressed in the terms of Bures

different values of x (in units of /40:7'1*1,8*%).

tential energy U. Fig. Mh shows that without this as-
sumption the potential adjustment yields steady state
pst significantly different from the canonical equilibrium

piloce 7, where §=kpT and H is system Hamiltonian.

Motivated by these arguments, we propose in this Let-
ter a general recipe to construct approximately thermal-
izable bath models under assumptions|(i)|and Fig. [0
illustrates this recipe in application to the above exam-
ple. The resulting mismatch between pg; and ﬁteh is small,
especially at high temperatures and in the weak system-
bath coupling limit. (The calculations details will be ex-
plained below.)

It will be shown elsewhere that the proposed recipe is
capable of accurately accounting for electronic and spin
degrees of freedom. We found it helpful in reservoir en-
gineering and optimal control problems. Moreover, the
resulting bath models are realizable in the laboratory and
can be used for coupling atoms and molecules nonrecipro-
cally ﬂ@] However, the scope of our recipe is limited by
the applicability of assumptions and and, there-
fore, cannot encompass strongly correlated systems (as
in the case of Anderson localization [3]).

The key results. Starting by formalizing the problem,
we write the general master equation that accounts for
memoryless system-bath interactions and ensures posi-
tivity of the system density matrix p at all times ﬂﬁ]

2 p=Lp), L=Lo+%a, (2a)

Folol=t[o, H], A=H(p, &)=, £-+U (%), (2b)
K

Fra= 2P, P ELHL - L (LT Lp+pLIL), (2¢)
k=1

where ® is the substitution symbol defined, e.g., in ﬂﬁ]
The superoperator .. accounts for system-bath cou-
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plings responsible for the friction term Ff in Eq. (&)
and depends on a set of generally non-Hermitian oper-
ators Lj. Based on theorems by A. Holevo ﬂﬁ, @], B
Vacchini [39-141] has identified the following criterion of
translational invariance for the %.q:

Lemma 1 (The justification is in Sec. [l of Ref. [15]).
Any translationally invariant superoperator Lye1 of the
Lindblad form @d) can be represented as

Lrel= D Efkd + Laux wWith (3a)

2 def _; . ~ ”
Ak =€ nkmf ( ) gaxux:_Z[llfauxw""faux (p)7 ®] (3b)
where Ky, and paux are N-dimensional real vectors, Nk are
complez-valued functions and faux ts real-valued [ . The

converse holds as well.

The primary findings of this work are summarized in
the following two no-go theorems.

No-go theorem 1. Let |Uy) be the ground state (or
any other eigenstate of H), such that (Uo|p|¥e)=0,
and which momentum-space wavefunction ¥o(p)=(p|¥o)
is nonzero almost everywhere, except for some isolated
points. Then, no translationally invariant Markovian
process of form @) and @) can steer the system to [¥q).

The idea of the proof, whose details are given
in Sec. M of Ref. [15], is to show that the state
po=|P0)(¥y| can be the fixed point of superopera-
tor e!? only if £,=0. First, note that the linearity
and translation invariance of the dissipator (@) imply
that Lreil [ g(z')e™ 72Ppet® PN /|=0 for any function
g(zx). This equation can be equivalently rewritten as

Lral[Wo(P)g(&)Vo(p)T]=0 (4)

using the identities e~ 7% |Wo) =v/27hWo(p) [¢') and
Jg(x') |x’ (w'|de':g(:i) here |2} is the eigenstate
of position operator: Iy |:c> =z}, |x’). Let us choose
g(z)=e~"*% where X is an arbitrary real vector, and
move to the right the @-dependent terms in the lhs
of Eq. @) using the commutation relations e~"**p =
(p+h\)e~ A with A=A, +kj. This rearrangement
brings Eq. @) to the form Gx(p)e =0 (note that all
the operators of form e****® expectedly cancel out ow-
ing to translation invariance of %,¢1). The last equality
can be satisfied only if the function G'x(p) vanishes iden-
tically for all p and A. However, careful inspection of
Sec. [T of Ref. ﬂﬁ] shows that the latter happens only if
ZLre1=0.

The statement of the [lst no-go theorem can be
strengthened for a special class of quantum systems. Let

3 The Gaussian dissipators glb (i €RY) can be reduced

=c+f fS (p)
to the form Eq. (@) as a hmltmg case Kk —0, as shown in Sec.[ll
of Ref. ] The generalized unitary drift term Zaux accounts
for ambiguity of the separation of the quantum Liouvillian & in
Eq. (Zal) into Hamiltonian and relaxation parts.
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B(p, A) be the Blokhintsev function [42], which is related
to Wigner quasiprobability distribution W (p, x) as

Blp,N)=[",... [, ()

No-go theorem 2. Suppose that the Blokhintsev func-

e (p,x)d .

tion By(p, \) of the thermal state p§*oce™ T characterized
by temperature kg T=0 is such that

Vp,A: By(p,A\)>0, By(p,—A)=Bg(p, ),
Vp;AO, )\750 : By (p, >\)<Bg (0, 0).

(6a)
(6b)

Then, no translationally invariant Markovian process ({2])
and @) can asymptotically steer the system to ﬁgh.

The proof of this theorem is given in Sec. [T of
Ref. ﬂﬂ] and generally follows the same logic as the out-
lined proof of the [[}st no-go theorem. Using Eq. (@) and
the familiar formula for the thermal state Wigner func-
tion [43], it is easy to check that the criteria (@) are satis-
fied for any 6 in the case of a quadratic potential U. This
means that the Lindblad’s original conclusion on inabil-
ity to thermalize the damped harmonic oscillator using
the Gaussian friction term Ppo=2bd is equally valid

. . nE+np T
for all Markovian translationally invariant dissipators.

Corollary 2.1. No translationally invariant Markovian
process of form @) and @) can steer the quantum har-

monic oscillator into a thermal state of form ﬁ‘éhoce’%.

Practical implications of the no-go theorems. In clas-
sical thermodynamics, the bath is understood as a
constant-temperature heat tank “unaware” of a system
of interest. However, the no-go theorems indicate that
system-bath correlations of at least one kind — spa-
tial or temporal — become obligatory for thermalization
once quantum mechanical effects are taken into account.
These correlations break the bath translation invariance
or Markovianity assumptions, respectively.

Nevertheless, in the view of computational advantages
outlined above, it is desirable to incorporate these as-
sumptions into the master equations (2)) and (). Now we
are going to introduce the recipe to construct such mod-
els with a minimal error in the thermal state. In order
to proceed, note that in the limit (hky)?< (p?) Eqs. @)
and (@) reduce to the familiar Fokker-Planck equation

4 (p ) Trw( ~p)%alp n
9?Dy.1(p Ffr ( )
7
; apnapl ; ( )
for the momentum probability distribution
w(p)=Tr[6(p—p)p]. The friction forces F in Eq. (7
as well as Eq. ([[al) have the form

F(p)=— 3 hei| fr (D)%, (8)

whereas the momentum-dependent diffusion operator is

Dn,l(i)):%z Dok | fr (D) Kbnfins. 9)
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Equations (§) and (@) can be satisfied by different sets
of ki and fir(p). We will exploit this non-uniqueness
to reduce the system-bath correlation errors. Our strat-
egy is reminiscent to the familiar way of making den-
sity functional calculations practical via error cancella-
tion in approximated exchange-correlation functionals.
We shall demonstrate the generic procedure by consid-
ering a one-dimensional oscillator with the Hamiltonian
H =3 ﬁ2+mT‘“2562 (here the dimension subscript n is omit-
ted for brevity). Corollary Bl implies that Zyei[p5"]70
and pu#py" for any 0, where pg=p|, e is the actual
fixed point of the evolutlon operator e However, the
net discrepancies can be reduced by imposing the follow—
ing thermal population conserving constraint:

4 (efan)e thZO; 5722 (efan)e o min for all a,
(10)
where (®),(t)=Tr[®e'?[p4"]]. This constraint can be

intuitively Justlﬁed when the characteristic decay rates
are much smaller than the typical transition frequen-
cies, such that the dissipation can be treated per-
turbatively. ~ Since the term Z[p4"] generates only
rapidly oscillating off-diagonal elements in the basis
of H, Eq. (I0) ensures that the first-order perturba-
tion vanishes on average for the exact thermal state:
limy o0 L [ €70 L0030 d7=0.

In the case of the driftless dissipation Laux=0, Eq. (I0)
is satisfied by the following functions fi(p) in Eq. @):

fr(p)=cper?m

where =(mhw)~! and the constants cj should be cho-
sen to satisfy Eq. [8). The corresponding dissipator (3))
reproduces the familiar microphysical model of quantum
Brownian motion (see e.g. Eq. (16) in Ref. [32]) in the
limit k—0, w—0. Furthermore, the resulting dynamics
tends to decrease (increase) the average system energy

(H), if its initial temperature ¢’ is higher (lower) than :

A=Kk tanh(—g) (11)

& (g |, o= 2380, O)(H)g — (H) )|,y (12)
where (0, 0)=2wBh? ki Ak exp(Bh2 A7 coth( 2 ))>O.
Equation (2)) suggests that pg is close to py?. This

conclusion is supported by the simulations presented in
Fig. Bh for the isotropic dissipator Lra=RB,, fiso

%Kyfisodctglbd_i_selbd’ Ai:eq:mifiso(iﬁ)' (13)
One can see that the high-quality thermalization is read-
ily achieved by tuning the free parameters ¢ and xj even
in the strong dissipation regime.

To understand the result (IIl), note that the terms
Eﬁzbd in Eq. @) represent independent statistical forces
k

(—hkr| fr(D)[?) contributing to the net friction (F™). In
classical mechanics, such forces at §=0 steer the system
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Figure 2. (a) The accuracy of thermalization of the harmonic
oscillator at #=0 by the dissipator grclzr%mfiso as function
of k and I'. The solid curves show the Bures distance Dy be-
tween the thermal state ﬁgh and its approximation pst for the
case f"°(p) defined by Eq. () with c=w//7°(0,0). The
dotted curves represent the clipped versions ([I4) of fiso(p).
The dashed curves correspond to the case of functions fiso (p)
approximated by Eq. (I8) with parameters ¢ chosen such that

(f‘bo( )—3°(p)) —0 for 1=0,1,2. (b) The Doppler
coohng setup to test the model @), @) in the laboratory.

to the state of rest by acting against the particles’ mo-
menta, hence

fe(P)=0 when pry<0 (classical mechanics).  (14)
However, clipping the functions () according to
Eq. (I4) introduces significant errors, as displayed by dot-
ted curves in Fig. Zh. Thus, the “endothermic” tails of
fx(P) at pri>0 break the thermalization in the classi-
cal case, but reduce errors in the quantum mechanical
treatment. To clarify this counterintuitive observation,
note that the physical requirement 4 (O), =0 for any

observable O in the thermodynamic equilibrium pg=pg"
is violated by the master equations ([2) and @) due to
the no-go theorems, i.e.,

>0

(15)

in the driftless case Laux=0. The inequality (I3 pro-
vides further evidence for the no-go theorems and is the
hallmark of the “position diffusion”, a known artifact in
the quantum theory of Brownian motion [41)].
According to Eq. (), &%), ‘t:O is sensitive to

smoothness of fk( ). Specifically, the rhs of Eq. (IH)
is exploded by any highly oscillatory components of
fx(p) and diverges if fi(p) is discontinuous. This en-
tirely quantum effect is the origin of poor performance
of the clipped solutions ([I4) seen in Fig. Bh. Equa-
tion (&) uncovers unavoidable errors in the poten-
tial energy. The optimal solutions (I]II) enforce error
Q< Uz

between ki-

cancellation }t —0= g(;)t (U(2))g |t

ot
netic and potent1al energ1es leaving the total energy in-
tact % Yo ’ +—o=0- In fact, the error cancellation is
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achieved with a large class of physically feasible func-
tions fr(p) that may substantially differ from the solu-
tions ([I)) everywhere but the region of high probability
density @ (p)=Tr[6(p—p)py"] (however, note the remark
in Sec. [Vl of Ref. [15]). ThlS is illustrated in Fig. Zh by
dashed curves overlapping with solid curves.

The master equations [2) and (@B provide accurate
non-perturbative description of collisions with a back-
ground gas of atoms or photons @, , . Hence,
the above theoretical conclusions can be directly tested
in the laboratory using well-developed techniques, e.g.,
the setup shown in Fig. Bb. Here a two-level atom is
subject to two orthogonally polarized counterpropagat-
ing monochromatic nonsaturating laser fields of the same
amplitude € and frequency w;. We show in Sec. [[V] of
Ref. ﬂﬁ] that the translational motion of the atom can
be modeled using Eq. () with an isotropic friction term
of form &Prel:%,ﬁgiso- Here

1
2

r=d, §%(p)=c1(B+(p—C)*)77, &R (16)
and the parameters ¢; can be tuned by € and wj.

Now we are ready to clarify why the deviations from
canonical equilibrium increase with || in Fig. Bh. The
parameters h|x| and §'*°(p)? in Eq. (IG) can be regarded
as the change of atomic momentum after absorption of
a photon and the absorption rate. The case of small
h|k|<\/(p?) and large §°(p)? implies tiny and frequent
momentum exchanges subject to the central limit the-
orem. The net result is a velocity-dependent radiation
pressure with vanishing fluctuations. The opposite case
of large h|k|>+/(p?) and small §'*°(p)? is the strong shot
noise limit, where the stochastic character of light ab-
sorption is no longer averaged out, notably perturbing
the thermal state. Note that a similar interpretation ap-
plies to quantum statistical forces in Ref. [47].

The dissipative model ([2) and @) with optimized pa-
rameters (L)) is further analyzed in Fig.[[lusing the same
parameters as in Fig. Zh. Both Figs. [l and Bh indicate
that thermalization can be modeled for a wide range
of recoil momenta fix € (—(hiy/B)~!, (hy/B)™!) and the
higher the temperature, the better the accuracy. Thus,
Egs. @) and @) enable to simulate a variety of velocity
dependences of friction and diffusion.

Finally, Fig. b benchmarks such simulations against
the commonly used quantum optical master equa-
tion (QOME) [48] defined by Eq. @d) with K=2,
Ly=V2Tw(l—e %)~ 2d, Lo=+/2Tw(e'® —1)~zat, where
@ is the harmonic oscillator annihilation operator. For
a correct comparison, the parameters of both models
are adjusted to ensure identical decay rates in Eq. ([I2I).
Systematic errors in our model and QOME are compa-
rable for the equilibrium d1sp1acements Axg~hfp~ 7 at
zero temperature and Axg~0.1h3~2 for §~hw. For low-
frequency molecular vibrational modes (m~10%atomic
units, w~200cm™1), these shifts are of order 0.4 A and
0.04 A, respectively, which are in the range of typical
molecular geometry changes due to optical excitations



316 or liquid environments. We found the displacement-
a7 independent errors in the model () and @) to be very
sis important for quantum control via reservoir engineering.
310 Furthermore, the same feature can also be exploited for
30 engineering the mechanical analogs of nonreciprocal opti-

1 cal couplings @ and energy-efficient molecular quantum
12 heat machines Eﬂ] These subjects will be explored in a
33 forthcoming publication.
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