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Abstract

We present an approach to generate chimera dynamics (localized frequency synchrony) in oscil-

lator networks with two populations of (at least) two elements using a general method based on

delayed interaction with linear and quadratic terms. The coupling design yields robust chimeras

through a phase-model based design of the delay and the ratio of linear and quadratic components

of the interactions. We demonstrate the method in the Brusselator model and experiments with

electrochemical oscillators. The technique opens the way to directly bridge chimera dynamics in

phase models and real-world oscillator networks.
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Phase models provide mathematical descriptions of weakly coupled oscillatory systems: the

state of each unit is described by a single variable, its phase, and the effect of coupling

is determined by the phase velocity as a function of the phase difference of the coupled

elements [1–3]. They capture collective dynamical phenomena (e.g., synchronization and

dynamical differentiation) of even very large networks of oscillators, as it was demonstrated

with electro-chemical [4] and neural oscillations [5, 6], and superconducting Josephson junc-

tions [7]. Phase-model based approaches have also been effective to induce desirable syn-

chronization patterns with external signals, e.g., with desynchronization, and stable and

itinerant cluster dynamics [8–10].

Many biological systems, however, operate at an intermediate level of (frequency)

synchronization [11]. Collective dynamics where oscillators are only locally frequency

synchronized—commonly know as chimeras—are striking examples for the rich dynam-

ics that arise even in identical units [12, 13] that are of relevance in applications [14].

Much theoretical effort has focused on chimeras in phase oscillator networks. These range

from explicit bifurcation analyses [15] to a mathematically rigorous notion of a chimera—a

weak chimera is characterized by angular frequency synchronization along trajectories—and

corresponding existence results [16–18]. At the same time, carefully designed experiments

with chimera dynamics have only drawn inspiration from the phase oscillator results [19–22]

rather than relate directly to them. Indeed, general experimental realization conditions for

robust chimeras (as asymptotic dynamics which arise despite the inherent heterogeneities)

are difficult to formulate because of the complexities of the experimental systems. For

example, the electro-chemical chimera system [22] lasted only 100 cycles, required many

connections (at least 20 units with 140 connections), and showed chimera dynamics with

unrealistically uniform system with natural frequency differences less than 0.1%.

In this Letter, we show that very robust chimeras arise in small network of oscillatory

system of only two populations of two elements, when the interactions among the elements

are designed in general way with weak linear and quadratic, time-delayed interactions. The

interactions are based on a phase model for which we predict the emergence and bifurcations

of weak chimeras. The effective design is achieved by generalization of a feedback approach

previously used to induce collective dynamics of globally coupled networks [8, 23, 24] to

complex network structures. We verify our approach in numerical simulations of the Brus-

selator model and experiments with electrochemical oscillators to observe weak chimeras in
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these systems.

Weak chimeras in networks of phase oscillators—We consider the dynamics of M = 2

populations of N = 2 phase oscillators where the phase interaction between oscillators is

determined by the coupling function

g(φ) = sin(φ− α) + r sin(2(φ− α)) (1)

with parameters α, r ∈ R. More precisely, let the phase θσ,k ∈ T := R/2πZ of oscillator k

in population σ ∈ {1, 2} evolve according to

θ̇σ,1 = ω + g(θσ,2 − θσ,1) + ε (g(θκ,1 − θσ,1) + g(θκ,2 − θσ,1)) (2a)

θ̇σ,2 = ω + g(θσ,1 − θσ,2) + ε (g(θκ,1 − θσ,2) + g(θκ,2 − θσ,2)) (2b)

where κ = 3 − σ, ω = 1 is the intrinsic frequency of each oscillator [25], and ε is the

interpopulation coupling parameter; see Figure 1(a) of the Supplemental Material for a

sketch of the network topology. If θ(t) is a trajectory of (2) with initial condition θ(0) =

θ0 then let θ̂(t) be a continuous lift of θ to R. With Ωσ,k(T ) := 1
T
θ̂σ,k(T ) we have the

asymptotic average angular frequency Ωσ,k = limT→∞Ωσ,k(T ) of oscillator (σ, k). Recall

that the characterizing feature of a weak chimera as a particular invariant set A ⊂ TMN is

frequency synchrony (and lack thereof): for all trajectories with initial conditions θ0 ∈ A

we have distinct oscillators (σ, k), (η, j), (ρ, `) such that Ωσ,k = Ωη,j 6= Ωρ,`; see [16–18] for a

precise definition.

If ε = 0 the populations in (2) are uncoupled which gives rise to invariant subspaces.

Each population evolves on T2 and, for a moment, we suppress the population index σ. The

set S = {θ1 = θ2} corresponds to full phase synchrony and D = {θ1 = θ2 + π} denotes the

splay phase where oscillators are in anti-phase. The asymptotic average frequencies of the

oscillators can be written in terms of the coupling function g: we have Ωk(θ
0) = ω + g(0)

for θ0 ∈ S and Ωk(θ
0) = ω + g(π) for θ0 ∈ D. Moreover, g determines the stability of S

and D. If g has only a single harmonic, r = 0, then full synchrony S and D exchange stability

at α = ±π
2

in a degenerate bifurcation. A second nontrivial harmonic, r 6= 0, breaks this

degeneracy, that is, for α ≈ ±π
2

there is a branch of stable (relative) equilibria for r > 0 [24]

and a region of bistability between S and D for r < 0.

For phase shifts α ≈ π
2

and r < 0 the system (2) now supports weak chimeras for a wide

range of parameter values ε > 0. Such chimeras arise as perturbations of D × S [26] for
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small ε > 0 [16]. For the dynamics (2) the space TS := T2 × S = {θ2,1 = θ2,2 =: ϑ}, where

the second population is phase-synchronized, is dynamically invariant and its transversal

stability is determined by g′(0) [3, 17]. The dynamics on TS are determined by the phase

differences ψk := θ1,k − ϑ which evolve as

ψ̇1 = g(ψ2 − ψ1)− g(0) + ε (2g(−ψ1)− g(ψ1)− g(ψ2)) (3a)

ψ̇2 = g(ψ1 − ψ2)− g(0) + ε (2g(−ψ2)− g(ψ1)− g(ψ2)) . (3b)

in frame that rotates (not necessarily uniformly) with the synchronized population θσ,k. The

set SS := S × S = {ψ1 = ψ2} ⊂ TS is dynamically invariant. Figure 1(a) shows the stable

limit cycle that corresponds to the stable weak chimera in the full system and in-phase

and anti-phase synchronized clusters in the phase plane of (3) for α = 1.57, r = −0.3,

and ε = 0.1. For initial conditions in TS trajectories either converge to the weak chimera

or to equilibria on SS; thus, we calculated the size of the basin of attraction of the weak

chimera periodic orbit as the complement of the basin of attraction B(SS) [27]. The basin of

attraction of the stable periodic orbit shrinks as ε ≥ 0 is increased—shown in Figure 1(b)—

and the periodic orbit becomes unstable in a pitchfork bifurcation of limit cycles at ε ≈ 0.64.

The unstable limit cycle is ultimately destroyed at ε ≈ 0.715 in a global bifurcation. The

stable weak chimeras here are robust against small perturbations of the system (as hyperbolic

limit cycles) and, in contrast to systems where g has only a single harmonic [28], exist for

a wide range of parameters with a relatively large basin of attraction. This makes them

suitable for realization in limit cycle oscillators through feedback.

Feedback induces weak chimeras in the Brusselator—We first illustrate our engineering

approach to obtain weak chimeras in limit cycle oscillator systems using the Brusselator

model, a simple two variable ODE system that admits a Hopf bifurcation [29]. For real

parameters A,B define f(x, y) = B
A
x2 + 2Axy + x2y. Let pσ,k(t) be a control signal for the

kth oscillator in population σ ∈ {1, 2} whose dynamics are given by

ẋσ,k = (B − 1)xσ,k + A2yσ,k + f(xσ,k, yσ,k) +Kpσ,k(t) (4a)

ẏσ,k = −Bxσ,k − A2yσ,k − f(xσ,k, yσ,k). (4b)

where K is the total gain for the control signal that is applied to the first component. Fix

A = 1, B = 2.3. For K = 0 each oscillator has a stable limit cycle with angular speed

ωBr = 0.977 and period TBr = 2τBr = 2πω−1Br .
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Figure 1. Weak chimeras exist for two coupled populations (2) of N = 2 oscillators. Panel (a)

shows the the phase plane of the reduced system (3) for ε = 0.1 (shading of arrows indicates their

norm): stable phase synchronized solutions in SS are shown in red, the stable weak chimera

periodic orbit in blue. Unstable periodic orbits (gray) bound both B(SS) (shaded area) and

the basin of attraction of the weak chimera. In Panel (b), the shading indicates the fraction

of initial conditions (ψ1(0), ψ2(0)) that lie in B(SS). Separation of average angular frequencies

(Ω1,k in blue and Ω2,k in red) characterizes the weak chimeras for (2) with fixed initial condition

(θ1,1(0), θ1,2(0), θ2,1(0), θ2,2(0)) =
(
0, π, π2 ,

π
2 + 0.1

)
. Note that while the stable weak chimera exists

up to ε ≈ 0.64, this initial condition leaves its basin of attraction at ε ≈ 0.5.

For appropriately chosen control and sufficiently small K, the network of Brussela-

tor oscillators has a desired phase reduction; see also [23]. More precisely, given a uni-

formly increasing phase variable φ̇σ,k = 1 on the limit cycle for K = 0 and a target

interaction function g(φ) =
∑

`∈Z g` exp(−i`φ) for the phase dynamics then the feed-

back h(φ) =
∑

`∈Z h` exp(−i`φ) can be obtained from the phase response curve Z(φ) =∑
`∈Z Z` exp(−i`φ) by solving

g` = Z−`h`. (5)

For feedback control, the h` may be expressed in terms of the waveform x(φ) =
∑

`∈Z a` exp(−i`φ)

which yields a set of equations involving the Fourier coefficients of the waveform, the phase

response curve, and the target interaction function g.

We realized the network (2)—up to a rescaling of time—with the feedback signal

pσ,k(t) =
∑

κ,j∈{1,2}
Kκσh(xκ,j(t− τ)) (6)

where the feedback gains Kκσ = 1 if κ = σ and Kκσ = ε otherwise determine the network
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Figure 2. Network interaction yields weak chimeras in Brusselator models for A = 1, B = 2.3.

Panel (a) shows the waveform x, phase response curve Z, and the effective interaction func-

tion gBr (dotted) on top of the target (1) with α = 0 (solid) for second order feedback parameters

(τ1, τ2) = 2πω−1Br (0.8577, 0.3156), (k1, k2) = (0.6601,−2.1692). Panel (b) depicts waveforms xσ,k

and phase differences 〈φk,σ − φ2,2〉 of a weak chimera for this feedback, ε = 0.1, and K = 0.03:

the frequencies of populations 1 (blue) and 2 (red) are distinct. These weak chimeras exist for

a range of ε as shown in Panel (c), here K = 0.05. The initial condition was the point with

(φ1,1(0), φ1,2(0), φ2,1(0), φ2,2(0)) =
(
0, π, π2 ,

π
2 + 0.1

)
for the uncoupled system.

topology and τ is a global feedback delay. Let x̄κ,j = xκ,j−a0 where a0 is the zeroth Fourier

coefficient of xκ,j as above (similarly, write ḡ = g−g0). Now for a given coupling function (1)

and second order time-delayed feedback

h(xκ,j(t)) = k1(x̄κ,j(t− τ1)− x̄κ,j(t− τ1 − τBr))

+ k2
(
(x̄κ,j(t− τ2)2 + x̄κ,j(t− τ2 − τBr)

2
)
,

(7)

the feedback parameters ks and τs are readily computed [8]. Since the delay τBr is equal to

half of the oscillations period, the linear feedback term will not have a second harmonic and

the quadratic term will not have a first harmonic. Moreover, each delay effectively act as a

phase shift for the coupling function (as long as Kτ is small) [8, 23]. Thus, choosing τ1, τ2 to

yield pure sin interaction for the first and second order feedback and then setting k2/k1 = r

yields the coupling function (1) for α = 0. For α 6= 0 set the global delay to τ = ω−1Br α. This

strategy yields a good approximation gBr of the target interaction function (1) as shown in

Figure 2(a) [30] without the need for extensive nonlinear fitting as in previous approaches [8].

Subject to feedback, the network of Brusselator oscillators (4) gives rise to weak chimeras.
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Figure 2(b) shows the evolution of xσ,k and 〈φσ,k〉—the average of φσ,k over one cycle—for

ε = 0.1. The average angular frequencies Ωσ,k (calculated from the phase φσ,k of each

oscillator) of the synchronized and anti-phase population are distinct. Stable weak chimeras

exist for a range of coupling parameters ε as shown in Figure 2(c), comparable to the

predictions obtained from the phase oscillator dynamics (2). The weak chimeras are robust

to adding small variations in the oscillators (not shown).

Experimental realization in electrochemical oscillators—We built an experimental system

with four (two populations of two) oscillatory chemical reactions that can be coupled through

linear and quadratic feedback with a delay. Each oscillatory reaction occurs on the surface

of a 1.00mm diameter nickel wire in 3M sulfuric acid. Because the disk electrodes are placed

far from each other (about 3mm spacing) and the potential drop in the electrolyte is very

small (about 0.1mV), the oscillators do not show synchronization without the presence of

additional coupling means [31]. A multichannel potentiostat interfaced with a real-time

Labview controller sets the potential Vσ,k(t) of the wires individually with respect to a

Hg/Hg2SO4/sat. K2SO4 reference electrode. The currents Iσ,k(t) of the four electrodes and

a Pt coated Ti electrode are recorded and converted to electrode potentials Eσ,k(t) = Vσ,k(t)−
Iσ,k(t)Rind, where Rind = 1kOhm is an individual resistance attached to each wire [8]; see the

Supplementary Material for more details on the experimental setup. The electrode potential

is corrected for offset, Ēσ,k = Eσ,k − o, where o is a time averaged electrode potential. For

the feedback the circuit potentials of each wire is set to

Vσ,k(t) = V0 +K
∑

κ,j∈{1,2}
Kκσh(Ēκ,j(t− τ)), (8)

where Kκσ determines the network topology, K is the total feedback gain, τ the global delay,

and

h(Eκ,j(t)) = k1
(
Ēκ,j(t− τ1)− Ēκ,j(t− τ1 − τEx)

)
+ k2

(
(Ēκ,j(t− τ2)2 + Ēκ,j(t− τ2 − τEx)2

) (9)

is the feedback as in (7). As above, the delay τEx is set to be equal to half a period of the

uncoupled oscillators: for the experimental setup with no coupling, K = 0, and potential

set to V0 = 1160mV the electrodissolution process is oscillatory with natural frequency of

about 0.45Hz. During the experiment a 2–3mHz difference in natural frequencies between

the electrodes was maintained.
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Initial trials allowed to determine the feedback parameters to get the desired coupling

functions (1) using the same strategy as in the numerical simulations. Employing pure

first and second order feedback gains, we set k1 = 0.22, k2 = 2.0V−1, τ1 = τ2 = τ = 0.

With these parameters, we determined the phase interaction function (using a self-feedback

method [24]). Figure 3(a) shows that the experimental phase interaction function gEx ap-

proximates the desired interaction function (1) with r = −0.4 and α = 0 very well. In terms

of Fourier coefficients, we obtained

ḡEx(φ) = −0.012 cos(φ) + 0.051 sin(φ) + 0.003 cos(2φ)− 0.021 sin(2φ) (10)

which shows that there are weak cosine and strong first and second harmonic sinusoidal

components with r = −0.41. Adding a global delay of τ = 0.51s, the uncoupled populations,

ε = 0, exhibited bistability between in-phase and anti-phase oscillatory states for K = 0.52

(see Supplementary Material). This choice of parameters corresponds to a phase shift of

α = 1.44 in the phase model, is expected to fall within the chimera regime and was used in all

the following experiments. Before the experiments, the phases of oscillators in populations 1

and 2 were set to anti- and in-phase configurations, respectively, to provide appropriate

initial conditions for the weak chimera.

We observed weak chimeras in the experimental setup for a range of coupling parameters

ε ≥ 0. First note that if there are no interpopulation connections, ε = 0, there is a very

large dynamically induced frequency difference of about 18mHz between population 1 in

anti-phase and population 2 in in-phase configuration; see Figures 3(c) and (d). When

the coupling between the populations was increased to ε = 0.1 the populations remain

approximately in anti- and in-phase configurations (see Figure 3(b)) but now exhibited

oscillations due to the interaction between populations. Importantly, the two populations

exhibited phase drifting behavior relative to each other; this state thus represents a weak

chimera state. As it is shown in Figure 3(c), the frequency difference between the populations

in the chimera state is much larger (about nine times) than the frequency difference without

interpopulation coupling. We observed chimera state for a large inter-population coupling

strength up to ε = 0.5; see Figures 3(c) and (d). As ε was increased, the amplitude of

the phase difference oscillations of the synchronized population increased. With strong

interpopulation coupling at ε = 0.8 the weak chimera breaks down and the two populations

became phase locked (see Supplementary Material).
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Figure 3. Experimental weak chimera; V0 = 1160mV, Rind ' 1kΩ. (a) Experimentally determined

(points) and desired (line) interaction function for τ = 0, r = −0.4; K = 0.35. (b) Phase difference

time series of population 1 (φ1,2 − φ1,1), population 2 (φ2,2 − φ2,1), and between the populations

(φ2,2 − φ1,1) of a weak chimera; K = 0.52, ε = 0.1. (c) Differences of frequencies (averaged over

populations) between populations without coupling, K = 0, (circles) and at various ε values, K =

0.52, (squares). (d) The frequencies of the populations at various ε values (squares = population 1,

circles = population 2) at K = 0.52.

Discussion—We showed that a simple network of two populations of two elements, cou-

pled through a linear and quadratic amplification with a delay of half the period, can generate

very robust chimera patterns with strong phase slipping behavior between the populations.

The induced chimeras do not rely on amplitude dynamics (e.g., from chaotic [32] or am-

plitude [33] clusters). Similar dynamics are expected with any nonlinear oscillatory system

with phase interaction function that has strong first harmonic and weak second harmonic

components. While oscillations very close to Hopf bifurcation typically have dominant first

harmonics in the interaction functions, second harmonics arise naturally away from the Hopf
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bifurcation point (unless there is some particular symmetry in the individual dynamics) [34].

Therefore, we expect that systems in which the oscillations occur through Hopf bifurcations

(e.g., class 2 neurons or resonators [35]) can exhibit the chimeras. Moreover, interactions

between oscillators are often nonlinear in Nature; examples include gating mechanisms that

limit the transduction of the coupling signals signals, as it was demonstrated with glycolytic

oscillations [36] or through synaptic coupling of neurons [37]. Thus, our results give insights

into how chimera dynamics emerge from the first two orders of the interaction, or could be

induced if these interactions can be tuned.

Our results directly bridge complex collective dynamics, such as chimeras, in phase mod-

els and real-world oscillator networks. On the one hand, this approach elucidates how com-

plex collective dynamics, which arise in phase oscillator networks, translate into networks

of limit cycle oscillators. On the other hand, we anticipate insights into the limitations of

phase oscillator models to describe collective dynamics of real-world networks beyond clus-

tering; for example, this should further clarify the need to include higher order interaction

terms [38–40] in the phase dynamics as they facilitate spatio-temporal dynamics of localized

synchrony [41].
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[2] J. Acebrón, L. Bonilla, C. Pérez Vicente, F. Ritort, and R. Spigler, Rev Mod Phys 77, 137

(2005).

[3] P. Ashwin and J. W. Swift, J Nonlinear Sci 2, 69 (1992).

[4] I. Z. Kiss, Y. Zhai, and J. L. Hudson, Phys Rev Lett 94, 248301 (2005).

[5] D. Hansel, G. Mato, and C. Meunier, EPL–Europhys Lett 23, 367 (1993).

[6] P. Ashwin, S. Coombes, and R. Nicks, J Math Neurosci 6, 2 (2016).

10



[7] K. Wiesenfeld, P. Colet, and S. H. Strogatz, Phys Rev E 57, 1563 (1998).

[8] I. Z. Kiss, C. G. Rusin, H. Kori, and J. L. Hudson, Science 316, 1886 (2007).

[9] M. G. Rosenblum and A. S. Pikovsky, Phys Rev Lett 92, 114102 (2004).

[10] G. Orosz, J. Moehlis, and P. Ashwin, Prog Theor Phys 122, 611 (2009).

[11] P. Uhlhaas and W. Singer, Neuron 52, 155 (2006).

[12] M. J. Panaggio and D. M. Abrams, Nonlinearity 28, R67 (2015).
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8, 658 (2012).

[21] E. A. Martens, S. Thutupalli, A. Fourriere, and O. Hallatschek, Proc Nat Acad Sci USA 110,

10563 (2013).

[22] M. Wickramasinghe and I. Z. Kiss, PLoS One 8, e80586 (2013).

[23] H. Kori, C. G. Rusin, I. Z. Kiss, and J. L. Hudson, Chaos 18, 026111 (2008).

[24] C. G. Rusin, H. Kori, I. Z. Kiss, and J. L. Hudson, Philos T Ro Soc A 368, 2189 (2010).

[25] Note that we can set ω = 1 without loss of generality in the phase equations (2) by going into

a suitable co-rotating frame. Moreover, in the phase dynamics we omit the global coupling

strength K introduced later since we can assume K = 1 by rescaling time appropriately.

[26] Since the system is symmetric with respect to permuting the populations there are also weak

chimeras close to S×D for small ε.

[27] We estimated the size of B(SS) numerically by checking the fraction of whether a trajectory

with initial condition on a uniform grid had approached SS after T = 300 time units up to

tolerance 10−3.

[28] M. J. Panaggio, D. M. Abrams, P. Ashwin, and C. R. Laing, Phys Rev E 93, 012218 (2016).

[29] P. Glansdorff and I. Prigogine, Thermodynamic Theory of Structure, Stability, and Fluctua-

11



tions (John Wiley & Sons Ltd, 1971).

[30] The phase response curve was calculated using XPP [42] to evaluate (5).

[31] I. Z. Kiss, Y. Zhai, and J. L. Hudson, Science 296, 1676 (2002).

[32] J. D. Hart, K. Bansal, T. E. Murphy, and R. Roy, Chaos 26, 094801 (2016).

[33] L. Schmidt, K. Schönleber, K. Krischer, and V. Garćıa-Morales, Chaos 24, 013102 (2014).
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