
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Topologically Protected Complete Polarization Conversion
Yu Guo, Meng Xiao, and Shanhui Fan

Phys. Rev. Lett. 119, 167401 — Published 18 October 2017
DOI: 10.1103/PhysRevLett.119.167401

http://dx.doi.org/10.1103/PhysRevLett.119.167401
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We consider the process of conversion between linear polarizations as light is reflected from a
photonic crystal slab. We observe that, over a wide range of frequencies, complete polarization
conversion can be found at isolated wavevectors. Moreover, such an effect is topological: the complex
reflection coefficients have a non-zero winding number in the wavevector space. We also show that
bound states in continuum in this system have their wavevectors lying on the critical coupling
curve that defines the condition for complete polarization conversion. Our work points to the use
of topological photonics concepts for the control of polarization, and suggests the exploration of
topological properties of scattering matrices as a route towards creating robust optical devices.

There are now significant interests in exploiting topo-
logical properties in a wide variety of physical systems.
In general, topologically-nontrivial systems are charac-
terized by topological invariants that take integer values.
Since an integer cannot be continuously changed, phys-
ical quantities associated with the invariant can be ro-
bust against small perturbations. Applying topological
concepts to optics has led to the development of topolog-
ical photonics [1, 2]. At present, most efforts in this field
have been devoted to the study of topological invariants
such as the Chern number in the photonic band struc-
tures of bulk photonic crystal and metamaterial struc-
tures, where a nonzero Chern number implies the exis-
tence of topologically-nontrivial edge states [3–13]. But
there are also emerging interests in extending topological
photonics concepts beyond band structure analysis. For
example, it has been recently noted that bound states in
continuum [14, 15], i.e., resonances with infinite quality
factors, are topological in nature [16].

In this Letter we seek to extend topological concepts
to the analysis of scattering matrices. The response of
any linear optical devices is characterized by its scat-
tering matrix, the elements of which are mode-to-mode
transmission and reflection coefficients. Here as an il-
lustration we consider the process of conversion between
linear polarizations for light reflected from a photonic
crystal slab. Using both numerical studies and analytic
theory, we show that a photonic crystal slab can pro-
vide complete polarization conversion in a reflection pro-
cess, which is a topological effect since the complex re-
flection coefficients have a nonzero winding number in
the wavevector space. Consequently, complete polariza-
tion conversion can be observed over a wide range of fre-
quencies. We also identify an interesting connection be-
tween complete polarization conversion and bound states
in continuum [14–16]: these bound states always lie on
the critical coupling curve that defines the condition for
complete polarization conversion.

Polarization is one of the most fundamental proper-
ties of light. There have been significant recent efforts in
using various photonic structures to achieve polarization
conversion [17–27]. Our result points to the use of topo-

logical photonics concepts to achieve polarization con-
trol. More generally, our work should motivate system-
atic studies of topological properties of scattering matri-
ces as a route towards creating robust optical devices.

Our structure consists of a photonic crystal slab pat-
terned with a square array of air holes introduced into the
dielectric slab and a mirror underneath, as illustrated in
Fig. 1(a). The periodicity of the crystal is chosen such
that within the wavelength range of interest only zeroth
order diffraction can occur in free space upon light inci-
dent from different angles. As a result, our structure is
characterized by the 2× 2 reflection matrix,

R =

(
Rss Rsp
Rps Rpp

)
. (1)

Here Rσµ denotes the reflection coefficient of µ-polarized
incident wave reflected into σ-polarized wave, where
σ, µ ∈ {s, p}. The polarization is defined with respect

to propagation direction indicated by a unit vector k̂,
that is, ŝ = ẑ × k̂, p̂ = ŝ × k̂, where ẑ is the unit vector
perpendicular to the slab.

We consider the lossless case first, where R is uni-
tary. As a result, complete polarization conversion, as
described by |Rsp| = |Rps| = 1, is equivalent to Rss = 0.
We focus on Rss since the zero of a complex function may
be topological.

We consider a structure with ε = 12, h = 0.3a,
r = 0.3a, where ε is the dielectric constant of the slab, a is
the periodicity, h is the thickness of the slab, and r is the
radius of the air hole. In Fig. 1(b), we plot the spectrum
of Rss computed using the rigorous coupled wave analysis
[28] for incident waves at two different parallel wavevec-
tors k‖ = (kx, ky). The blue curve shows |Rss|2 at
k‖,1 = (0.0240, 0.0522)2π/a, the red curve shows |Rss|2
at k‖,2 = (0.0345, 0.0717)2π/a. We observe Rss = 0 at
ω0,1 = 0.388 × 2πc/a and ω0,2 = 0.385 × 2πc/a, respec-
tively, indicating complete polarization conversion. In
Fig. 1(c) and (d), we show the amplitudes of reflection
coefficients Rss as a function of the parallel wavevector k‖
at ω0,1 and ω0,2, respectively. At both frequencies, we ob-
serve Rss = 0 at two isolated wavevectors related by the
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FIG. 1. (a) Schematic of the structure. A dielectric pho-
tonic crystal is sitting on top of a perfect mirror. We de-
note the dielectric constant of the slab by ε, the periodic-
ity by a, the thickness of the slab by h, the radius of the
air hole by r. For the other subplots, the parameters are
ε = 12, h = 0.3a, r = 0.3a. (b) Blue curve: reflection spec-
trum at k‖,1 = (0.0240, 0.0522)2π/a. Red curve: reflection
spectrum at k‖,2 = (0.0345, 0.0717)2π/a. The complete con-
version where Rss = 0 occurs at ω0,1 = 0.388 × 2πc/a and
ω0,2 = 0.385 × 2πc/a, respectively. (c, d) |Rss| at the fre-
quency (c) ω0,1, (d) ω0,2. (e, f) Direction flow of vector field
(Re(Rss), Im(Rss)) at the frequency (e) ω0,1, (f) ω0,2.

point group symmetry of the lattice. Numerically, when
varying the incident frequency from ω = 0.40× 2πc/a to
ω = 0.35 × 2πc/a, we observe the wavevectors at which
Rss = 0 shift from the Γ point towards the light cone.
The effect of complete polarization conversion is there-
fore robust with respect to frequency variation.

We now numerically demonstrate that the zeros in Rss
have non-trivial topological properties. Since Rss is com-
plex, we consider a vector field of (Re(Rss), Im(Rss)), and
compute the winding number of the vector field along a
closed path in the (kx, ky) space around the wavevec-
tors where Rss = 0. To visualize the winding number,

FIG. 2. (a) Band diagram of the structure in Fig. 1(a) with
ε = 12, h = 0.3a, r = 0.3a. The dash lines denote the light
cone. (b, c, d) Electric field (Re(Ez)) distribution of the low-
est order guided resonance at the interface between photonic
crystal slab and mirror at (b) Γ point, (c) (kx, ky) = (0.1,
0.0)2π/a on ΓX, (d) (kx, ky) = (0.1, 0.1)2π/a on ΓM .

in Fig. 1(e) and (f), we plot the direction flow of the
(Re(Rss), Im(Rss)) vector field at ω0,1 and ω0,2, respec-
tively. We observe a saddle point that has a winding
number of −1, at k‖,1, k‖,2 in Fig. 1(e) and (f), respec-
tively. We also observe a source point that has a wind-
ing number of +1 in the upper triangular region with
ky > kx. The source point is connected with the saddle
point by the mirror operation with respect to the x = y
plane. Such a mirror operation flips the sign of the topo-
logical charge. The nonzero winding numbers associated
with the zeros of Rss indicate that the effect of complete
polarization conversion is topological in nature.

Motivated by the numerical observation above, we now
present an analytic theory that provides insight into the
physical mechanism through which the non-trivial topo-
logical feature is generated. The results shown in Fig. 1
occur when the incident wave excites guided resonances
[29]. From the temporal coupled mode theory [30, 31],
the reflection matrix R in the vicinity of a non-degenerate
guided resonance can be expressed as [32]

R = −σz(I −
dd†

i(ω0 − ω) + γ
)C, (2)

where C = diag(Css, Cpp) is the background reflection
matrix, σz = diag(1,−1), I is the 2× 2 identity matrix,
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FIG. 3. The parameters are ε = 12, h = 0.3a, r = 0.3a,
which are same to that in Fig. 1 and Fig. 2. (a) Amplitude
of coupling constant to s-polarized waves of the lowest band,
denoted by |ds|. |ds| is zero along ΓX. (b) Amplitude of
coupling constant to p-polarized waves of the lowest band,
denoted by |dp|. |dp| is zero along ΓM . (c) The background
shows quality factor of the lowest order resonances in a loga-
rithmic scale. The dashed curve denotes the critical coupling
curve on which |ds| = |dp|.

d = (ds, dp)T , in which ds, dp are the coupling constant of
the resonance to s- and p-polarized waves, respectively,
γ is the radiation loss rate of the resonance, and ω0 is
the resonant frequency. At ω = ω0, if |ds| = |dp| 6= 0,
then Rss = 0, which implies complete polarization con-
version. Since in our scenario, the resonance can only
couple to two linear polarization radiation channels, the
condition of |ds| = |dp| is equivalent to the condition of
Q-matching to achieve perfect transmission in resonant
filter, or the condition of critical coupling to achieve com-
plete absorption in a resonant absorber. Below, we refer
to the condition |ds| = |dp| as the critical coupling con-
dition.

The guided resonances form photonic bands. On each
band, to achieve complete polarization conversion, we
need to find the critical coupling curve on which |ds| =
|dp|. We demonstrate that the existence of the critical
coupling curve is guaranteed by the C4v symmetry of
the structure. We plot the band diagram in Fig. 2(a).
The color in the band diagram reflects the parity of the
modes, red for odd modes, green for even modes, where
the corresponding mirror plane is y = 0 for wavevectors
along ΓX and x = y for wavevectors along ΓM . For
the lowest band, the eigenmode at the Γ point has a one-
dimensional irreducible representation B1 [33], where the
eigenvalues of operations C4 (rotation by π/2 around the
z-axis), σv (mirror with respect to y = 0) and σd (mir-
ror with respect to x = y) are −1, 1, −1, respectively,
as seen in Fig. 2(b). From the compatibility relations
[33], wavevectors along ΓX belong to the A representa-
tion of the C1h point group, where the eigenmode is even
with respect to the mirror plane y = 0 (Fig. 2(c)), and
wavevectors along ΓM belong to the B representation of
the C1h point group, where the eigenmode is odd with
respect to the mirror plane x = y (Fig. 2(d)).

Clearly, odd modes can only couple to s-polarized
waves and even modes can only couple to p-polarized

FIG. 4. The parameters here are ε = 4, h = 0.9a, r = 0.4a.
(a) Band diagram of the structure. The dash lines enclose the
region where only zeroth order diffraction can occur. The two
blue circles indicate guided resonances with infinite quality
factor. (b) The background shows quality factor of the lowest
order resonances in a logarithmic scale. The dashed curve
denotes the critical coupling curve on which |ds| = |dp|. The
blue circles indicate the wavevectors of the non-symmetry-
protected bound states in continuum where |ds| = |dp| = 0.
(c) Amplitudes of coupling constants to s-polarized waves of
the lowest band, denoted by |ds|. The blue circle indicates
the wavevector on ΓM for which |ds| = 0. (d) Amplitude
of coupling constant to p-polarized waves of the lowest band,
denoted by |dp|. The blue circle indicates the wavevector on
ΓX for which |dp| = 0.

waves. For the lowest band shown in Fig. 2, along ΓX,
the coupling rate to s-polarized wave ds is zero, whereas
along ΓM , the coupling rate to p-polarized wave dp is
zero. Thus for a point ∆ on ΓX, the coupling constants
of the lowest band satisfy |dp(∆)| ≥ |ds(∆)| = 0, whereas
for a point Σ on ΓM , |ds(Σ)| ≥ |dp(Σ)| = 0. On a line
segment connecting these two points ∆ and Σ inside the
reduced Brillouin zone, there must be at least one point
where |ds| = |dp|. At this point we have complete polar-
ization conversion unless |ds| = |dp| = 0.

To verify our theory, we compute the coupling con-
stants of the lowest band [34], as shown in Fig. 3. ds

and dp are indeed zero along ΓX and ΓM , respectively,
as argued above and shown in Fig. 3(a) and (b). And
we indeed observe the critical coupling curve in k-space
shown as the dashed curve in Fig. 3(c). Also, with the
coupled mode theory (Eq. (2)) and the numerical results
of the coupling constants, we have confirmed that at each
frequency within the lowest band the zeros of Rss on the
lower (upper) critical coupling curve in Fig. 3(c) indeed
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have a winding number of −1 (+1), consistent with the
direct numerical calculations presented above [35].

We note an interesting connection between complete
polarization conversion, and bound states in the contin-
uum as discussed in Refs. [14] and [16]. The Γ point lies
on the critical coupling curve as shown by the dashed
curve in Fig. 3(c). For this particular band, at the Γ
point the resonance is singly degenerate and cannot cou-
ple to external radiation modes, and hence has a diverg-
ing quality factor shown in Fig. 3(c). Therefore, this
resonance at the Γ point is a bound state in continuum.
In general, the bound state in continuum always lies on
the critical coupling curve, since at a bound state both ds

and dp vanishes, we have |ds| = |dp|. Of course, exactly
at a bound state there is no polarization conversion. But
in the immediate vicinity of a bound state there is always
a wavevector where complete polarization conversion oc-
curs. The frequency bandwidth over which significant po-
larization conversion occurs vanishes as one approaches
a bound state.

In Fig. 3(c), the bound state at the Γ point is protected
by symmetry. On the other hand, there is a recent dis-
covery of a new type of bound states in continuum that
is not protected by symmetry [14, 16]. The argument
presented above applies to both types of bound states.
Thus, we expect that the non-symmetry-protected bound
state in continuum should appear on the critical cou-
pling curve as well. As an illustration, we consider
a photonic crystal slab structure with the parameters
ε = 4, h = 0.9a, r = 0.4a. Fig. 4(a) shows the band
diagram for this structure. Examining the quality factor
of the lowest order guided resonances in the wavevector
space (Fig. 4(b)), we find two distinct non-symmetry-
protected bound states with infinite quality factors in-
dicated by the blue circles, one on ΓX, the other on
ΓM , in addition to the symmetry-protected bound state
at the Γ point. Fig. 4(c) and (d) show the amplitudes
of ds and dp of the lowest band, respectively. In addi-
tion to being zero due to mirror symmetry, both ds and
dp are zero at the wavevector where the non-symmetry-
protected bound states in continuum occur, as indicated
by blue circles. In Fig. 4(b), we also show the critical
coupling curve on which |ds| = |dp|, and indeed non-
symmetry-protected bound states in continuum lie on
this curve. Our results indicate an intriguing connection
between the two topological photonics effects of complete
polarization conversion, and bound states in continuum.

Our structure also exhibits unusual effects on circu-
larly polarized waves. Denote the left and right handed
circularly polarized waves by |L〉 and |R〉, which can be
represented by (1,∓i)T in the linear polarized ŝ, p̂ ba-
sis. Ordinary mirrors, where the reflection matrix R =
[−1, 0; 0, 1], reverses the handedness of incident circularly
polarized wave, e.g., R |L〉 = − |R〉 and R |R〉 = − |L〉.
For our structure, due to reciprocity and inversion sym-
metry, we find that Rps(k) = −Rsp(k), which fixes the

relative phase of Rps(k) and Rsp(k). Without loss of gen-
erality, we can write the reflection matrix R at complete
polarization conversion as [0, 1;−1, 0]. Upon reflection,
one finds R |L〉 = −i |L〉 and R |R〉 = i |R〉. Therefore, in
contrast to regular mirrors which flips handedness upon
reflection, our structure can completely reflect the inci-
dent circularly polarized wave while preserving its hand-
edness.

The robustness of the complete polarization conversion
effect comes from the fact that the eigenmodes on ΓX
and ΓM posses opposite parities with respect to their cor-
responding mirror plane. Though in this work we focus
on the lowest band, it is clear that any bands where the
Γ point belong to the B1 or B2 representation [33] of the
C4v group should be able to achieve complete polariza-
tion conversion as well. For a given structure, complete
polarization conversion can occur over a broad range of
frequencies. At each of these frequencies, there exist an-
gles at which complete polarization conversion occurs. At
a fixed incident frequency, the operating angular band-
width is inversely proportional to the quality factor of
the guided resonance, which is tunable by varying the
dielectric constant or geometrical parameters [36–38].

As a final remark, we briefly comment on the effects of
loss, with a more detailed discussion provided in the Sup-
plementary Material [39]. We gradually increase the loss
of the dielectric slab and examine how it affects the zeros
of Rss. For illustration, we choose h = 0.3a, r = 0.3a,
fix the real part of ε to be 12, and vary the imaginary
part of ε. As we increase the imaginary part of ε from
zero, we observe that the two opposite charges of Rss
move towards each other, and annihilate on the diago-
nal line kx = ky at Im(ε) ≈ 0.04 [39]. The efficiency of
polarization conversion, i.e. |Rps|2, generally decreases
as the loss increases. Nevertheless, in the wavevector
regions where the radiation loss rate of the guided reso-
nance dominates the material loss rate, one can observe
near perfect polarization conversion even in the presence
of realistic loss. On the other hand, the effect of Rss = 0
is topological, and hence there is always a wavevector
at which Rss remains exactly zero as modest amount of
loss is added in the system. Our results thus point to the
manifestation of an interesting effect that is topologically
protected against loss.

To summarize, we identify a non-trivial topological ef-
fect in the reflection matrix of a simple photonic crystal
slab, which leads to a capability for controlling the polar-
ization of light. In this system, the non-trivial topology
arises since the underlying map is from a two-dimensional
momentum space to a complex field. We expect a richer
set of topological phenomena as we consider maps from
higher dimensional space to other aspects of the scatter-
ing matrix that defines optical devices. Our work should
point to a fruitful avenue where we use the concepts of
topology to design optical devices.
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