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Electron correlation in graphene is unique because of the interplay between the Dirac cone dis-
persion of π electrons and long range Coulomb interaction. Because of the zero density of states
at Fermi level, the random phase approximation predicts no metallic screening at long distance
and low energy, so one might expect that graphene should be a poorly screened system. However,
empirically graphene is a weakly interacting semimetal, which leads to the question of how electron
correlations take place in graphene at different length scales. We address this question by comput-
ing the equal time and dynamic structure factor S(q) and S(q, ω) of freestanding graphene using
ab-initio fixed-node diffusion Monte Carlo and the random phase approximation. We find that the
σ electrons contribute strongly to S(q, ω) for relevant experimental values of ω even at distances
up to around 80 Å. These findings illustrate how the emergent physics from underlying Coulomb
interactions results in the observed weakly correlated semimetal.

Graphene has drawn much attention in the last decade
because of its unusual electronic and structural proper-
ties and its potential applications in electronics [1–8].
Although many electronic properties of graphene can
be correctly described in a noninteracting electron pic-
ture [8], electron-electron interactions do play a central
role in a wide range of phenomena that have been ob-
served in experiments [9]. For example, the reshaping of
the Dirac cone was first predicted [10–12] and later ob-
served experimentally [13]. The fractional quantum hall
effect has been observed under large magnetic field [14].
Collective plasmon and plasmaron excitation have also
been observed [15–18].

Two-dimensional Dirac systems exhibit interesting fea-
tures due to the influence of Coulomb interactions. The
random phase approximation (RPA) predicts a constant
dielectric constant as the frequency and wavelength ap-
proach zero. This is in contrast to normal metals, where
charge carriers and impurities are highly screened by the
Fermi sea through the formation of virtual electron-hole
pairs according to RPA [19]. All systems with linear
dispersion, including Weyl semimetals [20–23] and sur-
face states of topological insulators [24–26] require simi-
lar consideration. The electronic response in graphene is
thus interesting not only for itself, but for a broad class
of materials currently under study.

In recent years, it has become possible to obtain very
high resolution inelastic X-ray scattering (IXS) experi-
ments on graphite [27, 28], which were then analyzed to
obtain information about the graphene planes. These ex-
periments directly probe the dynamical structure factor
S(q, ω), which allows for a detailed look at the electron
correlations. The main purpose of these experiments was
to investigate the role of screening at long wavelengths,
and particularly whether the RPA obtains an accurate
representation of the physics at long range. While these
studies obtained unprecedented details about the low-
energy charge excitations, their interpretation is chal-

lenging because of limited experimental resolution and
uncertainties about the reference for the RPA; whether
the σ bonding electrons are included or not, and the
choice of the underlying theory, have large effects on the
result [29]. For small enough wavevector q and small
enough frequency ω, the effect of σ electrons should be
negligible, but it is unclear whether the experiments have
reached that regime.

In this manuscript, we address both the question of the
suitability of RPA perturbation theory and the effect of σ
electrons by applying highly accurate first-principles dif-
fusion quantum Monte Carlo (DMC) to graphene and
a series of related planar honeycomb systems. DMC
is a non-perturbative method with minimal approxima-
tions [30–32] and explicit representation of the electron-
electron interactions. It has been shown to be a highly ac-
curate method on both molecular systems and solids [30–
38]. We compute the structure factor S(q) which gives
information about the long-range density-density corre-
lations in the material and compare it directly to X-ray
data, obtaining agreement within the experimental error
bars. We find that the σ bonding electrons are surpris-
ingly important even at the longest range accessible to
experiment. In addition, if the RPA is performed includ-
ing the σ electrons from a DFT reference, it is in good
agreement with the experimental data, although the ab-
solute peak locations do depend on the reference as noted
previously [29].

The structure factor S(q) is a measure of the equal-
time charge-charge correlations of the system, defined as

S(q) ≡ 1

N
〈ρ−qρq〉, (1)

where N is the number of electrons in the system, and
ρq = eiq·r̂ is the density operator in reciprocal space.
S(q) is directly related to the Coulomb interactions of
the system [39],

V =
e2

4π2

∫
dq
S(q)− 1

q2
, (2)
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where V is the Coulomb energy per particle. S(q) is
the integral of the dynamic structure factor S(q, ω) over
frequency domain:

S(q) =

∫ ∞
0

dω

2π
S(q, ω) =

h̄q2

2m

∫∞
0
dωS(q, ω)∫∞

0
dωωS(q, ω)

. (3)

Here we have applied the f-sum rule [19]. S(q, ω) de-
scribes the dielectric response of the system [19]. It can
be measured through IXS experiment [27, 28], and can
be computed using RPA [19, 40].

The first-principles calculations were performed as
follows. DFT calculations were first performed using
the CRYSTAL package [41] with the Perdew-Burke-
Ernzerhof (PBE) exchange and correlation functional
[42]. The simulations were performed on a 16×16 super-
cell including 512 atoms. Burkatzki-Filippi-Dolg (BFD)
pseudopotentials [43, 44] were used to remove the core
electrons. The result of the DFT calculations was a
Slater determinant made of Kohn-Sham orbitals. The
Slater determinant was then multiplied by a Jastrow cor-
relation factor and optimized using variance optimization
[30]. DMC calculations were performed at Γ point using
the QWalk package [33] to obtain S(q). RPA calcula-
tions were performed using the GPAW package [45, 46]
to obtain S(q, ω). The Hubbard model was solved by
auxiliary-field quantum Monte Carlo method (AFQMC)
using the QUEST package [47].
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FIG. 1. Band structure of graphene, hydrogen and the tight-
binding model (with nearest-neighbor hopping t = 2.7eV).
Graphene and hydrogen band structures are from DFT cal-
culation with PBE functional.

In order to disentangle different contributions to
S(q, ω) from the π and σ electrons in graphene, we com-
pared S(q) of the five systems listed in Table I. All sys-
tems have similar low energy band structure (Fig. 1), but
differ in the presence or absence of the σ electrons, and
in the interaction between electrons. The s orbital of the
hydrogen system (with the same lattice constant a = 2.46
Å as graphene) has almost the same dispersion as the π
orbital in graphene. The similarity between these two
systems provides a way to understand the behavior of π
electrons in graphene in the absence of σ electrons while

still retaining a 1/r interaction. Graphene and the hy-
drogen model system are studied using DMC and RPA.
The tight-binding model (t=2.7eV) is studied using RPA
with 1/r interactions. S(q) is obtained by integration of
S(q, ω) according to Eq. (3).

TABLE I. Systems/models investigated

system/model electrons method

Graphene (G): a = 2.46 Å σ & π DMC, S-Ja, RPA
π-only graphene (Gπ) π S-Jb

Hydrogen (H): a = 2.46 Å s DMC, RPA
Tight-binding (TB): t = 2.7 eV π RPA

Hubbard: U/t = 1.6 π AFQMC
a S(q) is evaluated on a Slater-Jastrow wavefunction through
variational Monte Carlo method. The Slater determinant is
formed by the occupied π and σ orbitals.

b S(q) is evaluated on a Slater-Jastrow wave function formed by
only the occupied π orbitals. The Jastrow factor is the same
one used in full graphene.

Our theoretical results were compared with exper-
imental data from our previous IXS experiment [28].
The experiment was performed on single crystals of
graphite and the response function of graphene is ex-
tracted from graphite according to the procedure de-
scribed in Ref. [27].

Let us first consider the S(q) results for ab-initio
graphene, denoted by G in Fig. 2. For comparison,
we have plotted S(q) computed from a non-interacting
Slater determinant of Kohn-Sham orbitals [G(Slater)],
and that of a Slater-Jastrow wavefunction [G(S-J)]. Both
RPA and DMC results are very close to the experimental
IXS results, but there is a significant difference between
the correlated calculations and the Slater determinant, as
expected. The Slater-Jastrow result is indistinguishable
from the DMC result. It thus appears that the exper-
imental S(q) is well reproduced by any of these three
correlated techniques (RPA, S-J and DMC). Quantita-
tively, this change of S(q) from the Slater determinant
reflects a reduction of the Coulomb energy by 1.31(5) eV
per electron.

Now consider the H, TB, Hubbard, and Gπ models in
Fig. 2, which only contain one electron per site (1e/site),
in contrast to the four electrons per site (4e/site) of ab-
initio graphene. Each of these models has a computed
S(q) quite close to the others. Therefore, if 1e/site is con-
sidered, S(q) is about the same, regardless of the compu-
tational method and interaction. Also for 4e/site, S(q) is
about the same among these correlated calculations. We
can thus assess the importance of the bonding σ electrons
at different wavelengths by comparing the 1e/site curves
to the 4e/site curves.

At the smallest values of q available to both the com-
putational and experimental techniques, the 1e/site S(q)
differs from the 4e/site S(q). We would expect those
S(q) to coincide for q small enough if it were the case
that the σ electrons did not contribute to the long-range
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FIG. 2. S(q) of different systems obtained through different
methods. G: graphene; Gπ: π electrons only graphene; H:
hydrogen; TB: π-band tight-binding model with 1/r interac-
tions; Hubbard: the Hubbard model with U/t = 1.6.

density density fluctuations. We thus conclude that the
σ electrons contribute to the density-density fluctuations
even for q ∼ 0.1 − 0.2Å−1 and that S(q) is accurately
described by RPA, Slater-Jastrow, and DMC.

Now let us move to the dynamic response of graphene,
S(q, ω). Fig. 3(a) (b) and (c) shows the computed imag-
inary part of the response function χ(q, ω) of graphene
in comparison with the IXS results at different q. RPA
accurately reproduces the experimental data especially
at small q. For example, at q = 0.21Å−1, it accurately
reproduces the two plasmon peaks [16, 18, 48–50]: (1)π
plasmons from π → π∗ interband transition; (2) σ + π
plasmons from σ → π∗ and π → σ∗ interband transition,
denoted as ωπ and ωσ+π respectively in Fig. 3(a). RPA
is accurate even up to q = 1.25Å−1 [Fig. 3(b)]. It does
become less accurate at large q (2.80Å−1) [Fig. 3(c)], re-
sulting an underestimate of S(q) at short range for both
graphene and the hydrogen system (see the small discrep-
ancy between RPA and DMC curves in Fig. 2). Never-
theless, it appears that the long-range response is well-
described by RPA calculations that include the σ elec-
trons, at least to the limits of experimental resolution
and potentially with small errors in the peak positions.

At small q, the π+σ plasmons are inherently missing in
the TB model and hydrogen system. This is why S(q) in
these two systems is larger than that in graphene (Fig. 2)
If we exclude the π + σ plasmons in the integration of
Eq. (3) by setting the frequency cutoff to be 12eV, we
would get an S(q) similar to that of the TB model [see
the G(IXS12) curve in Fig. 3(d)]. The frequency cutoff in
our experimental data is 2, 000 eV which is high enough
to include relevant excitations of valence electrons.

At large q, graphene and the hydrogen system have
qualitatively different dynamic response [Fig. 3(b) and
(c)]. This is mainly because the excitation of the bond-
ing σ electron to high energy states in graphene, which
is missing in the hydrogen system and other 1e/site sys-

tems, resulting a discrepancy of S(q) between graphene
and the hydrogen system at short range (see Fig. 2).

The π plasmon resonance peak ωπ of the TB model
and hydrogen is 1 – 3 eV larger than that of graphene
[Fig. 3(a) and (e)]. This indicates strong screening effects
from the σ electrons in graphene which are not present
in the TB model nor in the hydrogen system. The in-
teraction from σ electron “renormalizes” the π plasmon
resonance frequency.

Let us investigate the “renormalization” effect from σ
electrons by reconsidering the dynamic response of TB
model. The TB(RPA) curve in Fig. 3 was computed by
assuming that the TB model is put in vacuum and that
the π electrons interact with each other through a bare
Coulomb interaction (1/r). Suppose it is in an environ-
ment of σ electrons, if we were within the RPA frame-
work, we would have to include a background dielectric
function κσ(q) in the response function χ(q, ω) [28, 51],

χ(q, ω) =
ΠTB(q, ω)

κσ(q)− V (q)ΠTB(q, ω)
. (4)

ΠTB(q, ω) is the polarization function in vacuum com-
puted using the Lindhard function [51], and V (q) is the
Coulomb interaction in reciprocal space. A good estima-
tion of κσ is [51, 52] [plotted in Fig. 3(f)] ,

κσ(q) =
κ1 + 1− (κ1 − 1)e−qL

κ1 + 1 + (κ1 − 1)e−qL
κ1 . (5)

κ1 ' 2.4 is the dielectric constant of graphite, and L =
2.8Å is the effective thickness for a single layer graphene.
The inclusion of κσ indeed reduces ωπ by about 1 – 2
eV [see the TBσ(RPA) curve in Fig. 3(e)]. Thus, we
confirmed that at the RPA level, the screening from σ
electrons reduces the π plasmon resonance frequency.

The remaining discrepancy between TBσ(RPA) and
G(IXS) [or G(RPA)] is partially due to the deviation of
tight-binding band dispersion from ab-initio graphene,
since the π plasmon frequency ωπ is directly related to
the π → π∗ interband transition. This deviation can be
seen from the calculated joint density of states (JDOS)
shown in Fig. 4,

jdos(ω) =
1

Nk

∑
k

δ(επ∗(k)− επ(k)− ω) , (6)

where επ(k) and επ∗(k) are the eigenvalues of π and π∗

bands respectively, and Nk is the number of k points
sampled in the first Brillouin zone. Because of the van
Hove singularity at the M point, there is a peak located
near επ∗(M)− επ(M). The π → π∗ transition energy at
M point is 5.4 eV for the tight-binding model, 4.2 eV for
ab-initio graphene, and 4.0 eV for hydrogen (see Fig. 1).
The peak shifts towards high energy from graphene to
the tight-binding model, which causes a difference of ωπ
by about 1 eV.
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FIG. 3. Effect of σ electrons. (a) (b), and (c): imaginary part of the response function χ(q, ω) of graphene (G), the hydrogen

system (H) and the tight-binding model (TB) from either X-ray experiment or RPA calculations at q = 0.21, 1.25, and 2.80Å
−1

.
(d) S(q) of graphene from integration of S(q, ω) with different upper frequency limit ωc: G(IXS) – 2,000 eV; G(IXS12) – 12
eV. (e) π → π∗ plasmon dispersion. (f) effective screening function from σ electrons.
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(H), and tight-binding model (TB) computed from PBE band
structure and tight-binding band structure.

Now consider the screening effect from the σ electrons
at different wavelengths. This can be seen from the dif-
ference between ωπ of graphene and the hydrogen system,
since the band structure deviation between the two sys-
tems is small up to the energy scale of ωπ [see the JDOS
in Fig. 4] and the difference of ωπ is mainly caused by
the screening from σ electrons in graphene. This differ-
ence of ωπ between the two systems decreases as q → 0
[Fig. 3(e)]. In the limit as q → 0, the screening from
the σ electrons goes to zero, which is also reflected in
κσ: κσ → 1 if q → 0 [Fig. 3(f)]. However, even at the
lowest momentum that the IXS experiment has access

to (q = 0.21Å−1) [28], the screening effect is not small
[κσ(q) ' 1.5]. It causes a shift of ωπ by 0.8 eV, which
is comparable to estimations of excitonic effects [27–29].
If it is desired to isolate the π electrons from the σ elec-
tron screening, one would have to reach the regime of
q � 0.21Å−1. For example, at q = 0.07 Å−1, the shift
reduces to 0.25 eV [Fig. 3(e)]. For this reason, π-only
models are accurate at small q regime, for example, in de-
scribing the renormalization of the quasiparticle disper-
sion near Dirac point [10, 12] and the infrared dispersion
of the intraband plasmon in doped graphene [9]. How-
ever, without including the σ electron screening, π-only
models even incorrectly predict an insulating graphene
in vacuum [52–55].

In conclusion, using the first-principles quantum
Monte Carlo approach and the random phase approxi-
mation with DFT as the reference, we are able to de-
scribe the electron correlations in graphene accurately
and reproduce the X-ray data very well for all q avail-
able, provided that the σ electrons are included in the
calculations. It is clear that the σ electrons are impor-
tant for the interpretation of IXS data even at ranges up
to around 80 Å. For very small values of q, the π-only
model is accurate, but the experimental data does not
reach those regimes.

The σ electrons impact the calculation in two impor-
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tant ways. First, at long wavelength, the σ electrons
respond through π + σ plasmons which causes graphene
to have an S(q) different from tight-binding model and
hydrogen. The screening from the σ electrons reduces
the π plasmon resonance frequency by about 1 – 2 eV
which is comparable to other effects such as excitons [29]
that will cause similar shifts. Second, with the presence
of σ electrons, the band structure of graphene deviates
from a π-orbital tight-binding model, which further mod-
ifies the spectrum. These effects are observable even at
q = 0.21Å−1, the lowest momentum that current X-ray
experiments can access.

This study shows that unprecedented detail into elec-
tron correlations can be obtained both from the ex-
perimental and theoretical points of view, even for a
system like graphene which has an unusual low-energy
band structure. Without adjustable parameters, we have
demonstrated the direct correspondence between density-
density fluctuations measured by inelastic X-ray experi-
ments and that calculated by theory. If the effects of all
valence electrons in graphene are carefully taken into ac-
count, it appears possible to account for most of the cor-
relations in graphene using standard techniques. Careful
consideration of valence electrons might also be needed to
describe correlated physics of similar systems like Weyl
semimetals and surface states of topological insulators.
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Rümmeli, M. Knupfer, J. Fink, B. Büchner, L. Reining,
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[52] T. O. Wehling, E. Şaşıoğlu, C. Friedrich, A. I. Lichten-
stein, M. I. Katsnelson, and S. Blügel, Phys. Rev. Lett.
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