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Abstract

We investigate the universal scaling of protein fluctuation dynamics with a site-specific diffusive

model of protein motion, which predicts an initial subdiffusive regime in the configurational relax-

ation. The long-time dynamics of proteins is controlled by an activated regime. We argue that the

hierarchical free energy barriers set the timescales of biological processes and establish an upper

limit to the size of single protein domains. We find it compelling that the scaling behavior for the

protein dynamics is in close agreement with the Kardar-Parisi-Zhang scaling exponents.
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Proteins are molecular machines whose structure and dynamics have been evolutionarily

designed to perform functional roles. While random sequences of amino-acids exhibit dis-

order and frustration, native sequences possess funnel-like free energy landscapes, and at

physiological temperature can reversibly fold to unique global configurations.[1, 2] In their

folded state, proteins possess specific dynamical pathways that allow the motion required

for biological function. In the picosecond regime, proteins fluctuate around a single struc-

tural minimum characterized by the topology of protein connectivity.[3] In the nanosecond

to microsecond regime, fluctuations lead to transition between metastable states which are

of nearly equal free energy. The slowest modes are biologically relevant for protein-protein

recognition and enzymatic activity.[4, 5] The longest timescale is set by the kinetics of protein

folding and unfolding, which is in the millisecond regime and longer.

Protein foldability and functionality occur in a narrow range of temperature, salt con-

centration, pressure, and volume: this implies a self-similarity in their dynamics. Simulta-

neously, proteins have exquisitely precise biological activity, which requires a high level of

specificity.[6] It is of paramount relevance to establish a precise relation between dynamical

pathways, which are protein specific, and the dynamical observables shared across proteins

as a class.

Dynamical normal-mode pathways are well-described by the Langevin Equation for Pro-

tein Dynamics (LE4PD), which is the starting point of this study.[7–9] The LE4PD rep-

resents proteins as chains of coarse-grained sites interacting through an effective potential-

of-mean-force and the hydrodynamic interaction. In its normal mode representation, the

free energy landscape is decomposed into a set of linearly-independent, mode-specific, rough

free-energy surfaces, which display the relevant free energy barriers and kinetic pathways.[10]

In this Letter we investigate the emergence of general scaling exponents in the specific

dynamical behavior by studying fourteen equilibrium molecular dynamics (MD) simula-

tions covering twelve various proteins. Input to the LE4PD ranges from 50 ns to 1.23

ms equilibrium MD trajectories. The starting structures were taken from NMR or X-ray

structures.[11–19] More details about the proteins and MD simulation protocols can be found

in the supplementary material (SM).[17]

In a set of recent papers the LE4PD was shown to provide protein-specific and site-specific

quantitative predictions for the pico- to nano-second dynamics measured by nuclear magnetic

resonance (NMR) spin-lattice relaxation time, T1, spin-spin relaxation time, T2, and nuclear
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Overhauser effect (NOE), which qualifies the LE4PD as a reliable representation of protein

dynamics close to the folded state.[7–9] Theoretical predictions correlate with allosteric,

catalytic, and binding activity reaching the microsecond regime.[10] Here we address the

shared dynamical properties across proteins as a class, spanning the short-time diffusive

regime out to the longest timescales of folding and unfolding.[20]

In the LE4PD each molecule is represented by a set of N coarse-grained sites, located in

the α-carbons along the primary sequence. Given the bond li with i = 1, ..., N−1 the struc-

tural coupling between bonds is represented by the U matrix (U−1)ij = 〈~li ·~lj〉/(〈|~li|〉〈|~lj|〉).

Bond dynamics is coupled through the hydrodynamic interaction matrix, H, which in its

preaveraged form enters the LE4PD equation through the matrix product L = aHaT , where

a is the matrix of the backbone connectivity. The preaveraged hydrodynamic interaction is

Hij = (ζ/ζi)δij +(1−δij)rw〈r−1ij 〉, with ζ = N−1
∑N

i=1 ζi the site-averaged friction coefficient,

rij the distance between a pair of α−carbons, and rw the hydrodynamic radius correspond-

ing to the fraction of a CG-site surface exposed to water. The stochastic equation of motion

for bond ~li(t) is

∂~li(t)

∂t
= −σ

∑
j,k

LijUjk~lk(t) + ~vi(t) , (1)

with σ = 3kBT/(l
2ζ), T the temperature, kB the Boltzmann constant, and ~vi(t) the random,

delta-correlated bond velocity. This linear Langevin equation is used for constructing a

convenient basis for projecting the non-linear dynamics from the atomistically-detailed sim-

ulations. Once transformed into the diffusive normal mode coordinates, mode-dependent

energy barriers are used to rescale the dynamics using a Kramers type of approach.[8, 21]

Input parameters are the system conditions (temperature, solvent viscosity) and the

equilibrium structural properties from the configurational ensemble spanned by the atomistic

simulations. The diffusive normal mode representation is obtained from the diagonalization

of the matrix product LU, with Q the eigenvectors and λa the eigenvalues. In the diffusive

modes Eq. 1 reduces to a set of N − 1 uncoupled linear equations where the modes, ~ξa(t) =∑
iQ
−1
ai
~li(t), uniquely define the instantaneous conformation of the macromolecule. One

may notice that any anisotropy inherent to the dynamics of ~li(t) in the MD trajectory is

inherited by the vector ~ξa(t) (see SM). The mode basis spans the same space as the bond

vector basis with near linearity: 〈~ξa · ~ξb〉 ∼= δabl
2/µa with µa =

∑
i,j Q

−1
ai U

−1
ij Qja, which can

then decompose the free energy landscape into a convenient set of mode-dependent energy
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maps.[8] The length of the mode is defined as L2
a = l2/µa, while the associated diffusive

timescale τa = (σλa)
−1. It is worth mentioning that our formalism is distinct from the

mechanistic view of the dynamics in terms of the frequencies of normal modes of molecular

vibrations often adopted in molecular biophysics, which lacks the dissipative dynamics and

neglects hydrodynamics and internal energy barriers that are important at long time.[3,

22, 23] Internal dissipation due to fluctuations in the hydrophobic region is included in

our formalism by accounting for an effective protein internal viscosity and considering the

relative exposure of each amino acid to the hydrophobic region.[7]

The first three global modes of the LE4PD, in most cases, describe the protein rotation

tensor. Internal modes, with index p = 1, ..., Np and Np = N−3, are characterized by a small

number of metastable minima whose depth, or the barriers between them, are largest for

the low mode numbers corresponding to the most collective, large-amplitude fluctuations.[9]

We evaluate the barrier height for mode p as the Median Absolute Deviation (MAD)[24]

from the global minimum on the mode orientational free energy surface , where the MAD

is an appropriate metric that is robust to outliers and unevenly sampled distributions, and

captures the dispersion in a set of data (see SM[17]). Figure 1 shows that the free energy

barriers scale with mode length as E†p = (εLp)
γ with γ = 0.93 ± 0.20 and ε = 6.5 (kcal

mol−1)1/γ nm−1.

The direct proportionality between the free energy barrier and mode length appears to

extend from the 1 Å scale out to the nanometer scale, which characterizes the overall size

of the protein. On the local length scale, where the specific chemical nature of the protein

primary sequence is most important, the free energy barriers are still protein specific.

The observed scaling law is consistent with the hierarchical nature of the protein free

energy landscape. On the local scale (large p) the bonds fluctuate independently, while large-

amplitude correlated fluctuations occur when the bonds, which are dynamically correlated

on the lengthscale of the mode, transition collectively (small p).[25] The model connects

the complex hierarchical nature of the free energy landscape of a protein in solution to the

structure of a glassy fluid.[26, 27]

In the short-time regime, the protein fluctuates around the minima of the free energy

landscape: the dynamics are diffusion controlled and well represented by the LE4PD with

free energy barriers not included. The LE4PD is an extension of the traditional Rouse-Zimm

approach to the dynamics of macromolecules in solution,[28, 29] while it also includes local
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FIG. 1: Mode-dependent free energy barrier, E†p = (εLp)
γ
, mode lengthscale Lp for all proteins with

γ = 0.93± 0.20 and ε = 6.5 (kcal mol−1)1/γ nm−1 (blue dashed line).

semiflexibility and non-linear connectivity, anisotropic rotational dynamics, and the effect

of the hydrophobic core on the hydrodynamic interaction: these play a role in the dynamics

at short time.[9, 10]

The mode lengthscale scales with internal mode number p as Lp ∝ p−β with β = 0.41±

0.06, for all the proteins in this study (see left panel of Figure 2). The scaling indicates a

greater stability than in the case of the completely flexible unfolded chain where β = 1.[28]

In the diffusive regime the average mean-squared displacement (MSD) for one amino acid

inside a protein can be written in the center-of-mass frame as

1

N

N∑
i=1

〈(
~Ri(t)− ~Ri(0)

)2〉
=

2

N2

N∑
i=1

N∑
j=i+1

j−1∑
k,l=i

N−1∑
a=1

QkaQla

(
〈~ξ2a〉 − 〈~ξa(t) · ~ξa(0)〉

)
, (2)

whereRi is the position of the α-carbons in the coarse-grained model. At zero time difference,

the bead position lengthscale for internal mode p is

R2
p = 1

N2

∑N
i=1

∑N
j=i+1

∑j−1
k,l=iQkpQlpL

2
p ≈ C2

sL
3
p. The diffusive mode timescale is predicted

by the LE4PD to scale with mode length as τ0,p = CτL
α
p , with α = 2.00 ± 0.41, where

the index 0 indicates that free energy barriers are not included in the short-time LE4PD.

Approximating Rp and τp with their scaling forms, and the discrete sum as an integral

MSD ≈ 2C2
sL

3
max

∫ Np

p=1

dp p−3β
(

1− exp
[
− tpβα

CτLαmax

])
, (3)

where Lmax is the largest internal mode length.

The short-time expansion of Eq. 3 scales as MSD ∝ tν with ν = (3β − 1)/(βα). The

LE4PD gives the exponents β = 0.41 and α = 2.00, which leads to a strongly subdiffusive

5



1 10 50 100 200
p

0.05

0.1

0.2

0.4

1

L
p
/L

m
ax

1 10 100 1000

t, ps

0.001

0.01

0.1

M
S

D
, 
n
m

2

β = 0.41 ± 0.06

ν = 0.26 ± 0.09

FIG. 2: Left: Mode length Lp and mode index for all proteins and the scaling Lp = Lmaxp
−β with β = 0.41

(blue dashed line). Right: Predicted subdiffusive mean-squared displacement 〈R2(t)〉 ∝ tν with ν = 0.26

(blue dashed line), the average MSD of all proteins (solid-line), and the MSD of each protein individually.

short-time regime characterized by the exponent ν = 0.28. This exponent agrees well with

the exponent ν = 0.26 ± 0.09 measured directly from MD simulations, see Figure 2, and

with the exponent ν ∼ 0.3 that models thiyl radical recombination experiments, where the

exponent is shown to be an inherent property of the polypeptide backbone, independent of

the primary sequence of the protein.[30]

In the long-time regime the LE4PD accounts for the effect of the local free energy bar-

riers on the internal dynamics, as the friction becomes mode dependent, including thermal

activation over the mode-dependent free energy barrier[21] ζ → ζ exp[〈E†p〉/(kBT )], leading

to the slowing of the mode timescale as

τp = CτL
α
p exp

[(εLp)
γ

kBT

]
. (4)

This renormalization provides an average correction which approximately accounts for the

local barrier crossing, in agreement with free energy landscape theories.[1, 26] Figure 3

compares the LE4PD mode-dependent relaxation times with and without inclusion of the

free energy barriers.

At long times the dynamics are dominated by the largest internal mode lengthscale,

6



0.02 0.04 0.08 0.16 0.32 0.64 1.28 4

L
p
, nm

1

1000

1e+06

1e+09

1e+12

τ/
(η

β
l3

) τ
p

τ
0

FIG. 3: Reduced mode timescales, τ/(ηβl3), for all proteins as a function of mode length scale, Lp, where

η, β, and l are solvent viscosity, inverse temperature, and average effective bond length, respectively. The

red triangles show the reduced mode timescales before free energy barrier correction and the scaling

τ0,p = CτL
α
p with α = 2.00± 0.41 (blue line). Free-energy barrier corrected, reduced mode timescales

(black circles) and the scaling τp = CτL
α
p exp[

(εLp)
γ

kBT
] (magenta line). Reduced timescales of folding for 52

proteins, plotted against the largest mode lengthscale, approximately the protein radius of gyration (green

circles).[6]

Lmax. For (εLp)
γ < kBT , the relatively small barriers only slightly slow the mode relaxation;

therefore, the diffusive and barrier rescaled timescales roughly coincide. As the fluctuations

grow in size the free energy barrier correction causes the mode relaxation time to rapidly

propagate out to folding timescales at the nanometer lengthscale. This lengthscale happens

to be the typical size of single-domain proteins and the analysis of a dataset of 2-state

folding times for 52 proteins,[6] shows clustering around the line representing Eq. 4. LE4PD

relaxation times from the millisecond unfolding/folding trajectories of ubiquitin by Piana et

al., also agrees with Eq. 4. This equation effectively extends to the length and timescales of

protein folding, suggesting that the hierarchical roughness of the free energy landscape is the

leading contribution to the dynamical slowing down of fluctuations and folding/unfolding.

When including the free energy barriers Eq. 3 becomes

MSD = 2C2
sL

3
max

∫ Np

p=1

dp p−3β
(

1− exp
[
− tpβα

CτLαmax

exp
(
− (εLmaxp

−β)γ

kBT

)])
. (5)

Figure 4 compares the mean-squared displacement from the simulation with the theoret-

ical LE4PD predictions. It can be observed that the initial subdiffusive power-law scaling

at short times undergoes a long crossover to a barrier-dominated, slow growth. At 300 K,
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below the folding temperature, the protein is stable and the MSD levels off at around a

microsecond. The scaling form from the integral in Eq. 5 quantitatively reproduces the

shape of mean squared displacement with the largest internal mode length of Lmax = 0.6

nm (left panel of Figure 4). Above the folding temperature, the MSD is of the order of the

size of the protein, and levels off around the folding relaxation time of ∼ .1 ms, described

by Eq. 5 with Lmax = 1.2 nm (right panel of Figure 4).
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FIG. 4: Mean squared displacement of the ubiquitin protein at 300 K (left panel) and 390 K (right panel)

from the millisecond scale simulations of Piana et al. (solid line).[20] The short-time subdiffusive

MSD ∝ tν with ν = 0.26 (dashed line), and the long-time crossover to the activated regime from Eq. 5

(dot-dashed line).

The scaling of free energy barriers with fluctuation length sets an upper limit on the

domain size in proteins. The size distribution of protein domains found in biology is peaked

at around 100 amino acids and near zero by 300 amino acids.[31, 32] This corresponds to

proteins of maximum size Rg ∼ 2.0 nm, with relaxation time of ∼ 1 minute. This result

indicates that protein domains larger than the typical size found in nature would have

relaxation times exceeding biologically relevant timescales.

A simple representation that captures the proper scaling exponents predicted by our

approach is the theory of motion on a random energy landscape. A general elastic manifold
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embedded in a field of random pinning potentials results qualitatively in hierarchical free

energy landscapes of the type observed here for proteins.[33] Following this analogy, the

origin of the roughness in the free energy landscape of the proteins can be disorder, which is

generated by the constantly forming and breaking of the hydrogen-bonding network between

protein and solvent, on a timescale of picoseconds.

Protein function operates over a narrow temperature window bounded by an upper melt-

ing temperature and a lower glass transition temperature.[26] In this temperature range the

hydrogen bonding network is poised at critical stability. The entropy-enthalpy compensation

of individual hydrogen bonds results in the metastability of multiple protein configurations.

[34–36] We conjecture that the critical nature of the hydrogen bond network serves as ran-

dom energy perturbations to the protein, and that the energy-scale and length-scale involved

in making and breaking of hydrogen bonds sets ε the energy per unit length.

We make the assumption that the motion of an average protein site, in the field of its com-

plex, rapidly-varying, many-body environment, can be described by harmonic fluctuations

subjected to a time-dependent energetic disorder. By making use of this reasonable as-

sumption, the LE4PD may be mapped to the Directed Polymer in Random Media (DPRM)

(see the SM),[17] which is the simplest model to describe finite-temperature motion on a

d-dimensional random energy landscape.[37] Specific considerations of the folded state of

proteins as fractal objects has led to the conjecture that folded proteins are poised on the

edge of metastability where the space-filling dimension is df > 2 and the spectral dimen-

sion is ds < 2,[38] while analysis of the vibrational spectrum of globular proteins predicts a

general d ∼ 2 dimensional folded state.[39] Thus protein dynamics maps onto the DPRM

theory in roughly (2+1) dimension, with the extra dimension given by time.

Through a straightforward mathematical transformation the (2+1) DPRM model maps

into the celebrated (d=2) Kardar-Parisi-Zhang (KPZ) equation describing the surface height

of a solid growing by random deposition.[40] The effective free energy of the DPRM is directly

proportional to the surface height of a growing solid in the KPZ model.[41, 42] Noting that

the energetic disorder explains the universal features of the protein dynamics in this work,

we conjecture that the origin of the general scaling of the free energy barriers observed for all

proteins is the rough surface-height distribution of the KPZ universality class (see SM).[17]

In fact, we find it compelling that the scaling exponents predicted by our formalism such as

the barrier exponent, 0.38 = γβ (E†p ∝ p−γβ) and the early-time exponent, ν = 0.26 are in
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close agreement with the roughening exponent χ = 0.39 ± 0.01 of the d = 2 KPZ-equation

and the early-time growth exponent L(t) ∝ tν of the (2+1) DPRM ν = 0.240±0.001.[43, 44]

While biology demands specificity in protein motions, the narrow physical conditions in

which proteins are biologically active suggests self-similarity and criticality in their dynam-

ical behavior. Concealed by the evident complexity of protein dynamics should be simple

universal laws. In this Letter we show that underlying the specific dynamical pathways of

proteins is in fact a universal, hierarchical scaling that suggests an origin in the Directed

Polymer in Random Media dynamical model, and the Kardar-Parisi-Zhang universality class.

This interesting analogy may emerge once the dynamics are represented in the diffusive nor-

mal modes of the LE4PD theory because it decomposes the configurational free energy into

linearly-independent modes, from which the universal scaling is readily identified. This hi-

erarchical scaling in the free energy sets the overall time- and length-scales of biological

processes, which involve the rearrangement of protein domains.
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