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We suggest that a randomization of the pseudo-dipolar interaction in the spin-orbit-generated low-
energy Hamiltonian of YbMgGaO4 due to an inhomogeneous charge environment from a natural
mixing of Mg2+ and Ga3+ can give rise to orientational spin disorder and mimic a spin-liquid-like
state. In the absence of such quenched disorder, 1/S and DMRG calculations both show robust
ordered states for the physically relevant phases of the model. Our scenario is consistent with the
available experimental data and further experiments are proposed to support it.
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Dating back to Wannier’s pioneering study of the Ising
model [1], triangular lattice models and materials with
frustrating antiferromagnetic interactions have served as
fertile playgrounds for new ideas [2–10]. These systems
continue to draw significant experimental [11–15] and
theoretical interest because they exhibit many intrigu-
ing novel ordered states [16–22] and unusual continuum-
like spectral features [23–31], and especially because they
provide a setting for spin-liquid states [32–42].

Among the latest experimental discoveries [14, 15], a
rare-earth triangular-lattice antiferromagnet YbMgGaO4

has recently emerged as a new candidate for a quantum
spin liquid of the effective spin-1/2 degrees of freedom of
Yb3+ ions [43, 44]. It has been argued that the spin-orbit
origin of its magnetic properties and the pseudo-spin
nature of the low-energy states with highly anisotropic
effective spin interactions may potentially open a new
route to realizing quantum spin liquids [44–46]. While
the lack of ordering, anomalous specific heat, and es-
pecially continuum-like excitations in inelastic neutron
scattering [45, 47] all provide strong support to the idea
of an intrinsic spin liquid, other experimental findings are
increasingly at odds with this picture.

First, in magnetization vs field measurements, there is
no sharpening of the transition to the saturated phase
upon lowering temperature and the lack of the upward
curvature in M(H) at the lowest T ’s [43, 44] is indica-
tive of low quantum fluctuations in the ground state [49].
Second, in the high-field polarized phase, neutron scat-
tering shows that continuum-like excitations persist, with
significant smearing of magnon lines that are expected
to be sharp [47]. In addition, an apparent absence of
any detectable contribution of spin excitations to ther-
mal conductivity down to the lowest temperatures, ac-
companied by a strong deviation of the phonon part from
the ballistic T 3 form [50], both suggest strong scattering
effects. These, combined with the anomalously broad-
ened higher-energy Yb3+ doublet structure [47, 48] and
a ubiquitous mixing of Mg2+ and Ga3+ ions in the non-
magnetic layers [43, 47], implicate disorder as a key con-
tributor to the observed properties [48].

In this Letter, we first argue that a hypothetical,

disorder-free version of YbMgGaO4 should exhibit a ro-
bust collinear/stripe magnetic order. We demonstrate
this by extending the well-studied phase diagram of
the triangular-lattice Heisenberg J1−J2 model, which
is known to have an extensive spin-liquid region for
S = 1/2 [33–40], to the anisotropic version of the model
that corresponds to the types of anisotropy allowed in
YbMgGaO4 with realistic restrictions from experiments.
A significant XXZ anisotropy present in YbMgGaO4 sup-
presses the spin-liquid region of the phase diagram and
the pseudo-dipolar interactions further diminish it. Both
types of anisotropy lower the symmetry and produce gaps
in the excitation spectra, reducing quantum fluctuations
that suppress the ordered states.

We then suggest that the stripe order is fragile to an
orientational disorder that can be easily produced via a
randomization of the subleading pseudo-dipolar interac-
tions. The physical reason of such a sensitivity is a small
energetic barrier, δE∼0.03J1 per site, between the stripe
phases of different spatial orientations, which, in the ab-
sence of the pseudo-dipolar terms, are selected by order-
by-disorder fluctuations. Thus, we propose that the spin-
liquid-like state in YbMgGaO4 is disorder-induced and is
composed of nearly-classical, orientationally-randomized,
short-range stripe-like spin domains. The quenched,
spatially-fluctuating charge environment of the magnetic
Yb3+ ions due to random site occupancies of Mg2+ and
Ga3+ ions is seen as a likely culprit, affecting the low-
energy effective spin Hamiltonian through the spin-orbit
coupling.

Model.—Although the magnetism of YbMgGaO4 is
dominated by spin-orbit coupling, which can result in
large spin anisotropies of various types [51–54], it is re-
stricted by the high symmetry of the lattice [44, 45],
yielding the familiar XXZ anisotropy accompanied by
the so-called pseudo-dipolar terms. Moreover, the local
character of the f -shells on Yb dictates that the domi-
nant interactions are between the nearest-neighbor spins,
further restricting possible spin models.

Thus, we are compelled to explore the phase diagram
of the following S=1/2 model as relevant to YbMgGaO4

[43–45, 47] and also to a broader family of the rare-earth
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triangular-lattice materials [55]: H=HJ1−J2XXZ +Hpd, with

HJ1−J2XXZ =
∑
〈ij〉n

Jn
(
Sxi S

x
j + Syi S

y
j + ∆Szi S

z
j

)
, (1)

where the sums are over the (next-)nearest-neighbors
with J1 > J2 ≥ 0, the XXZ anisotropy 0 ≤ ∆ ≤ 1, and
the pseudo-dipolar terms introduced as [44, 45, 47]

Hpd = J±±
∑
〈ij〉

(
eiϕ̃αS+

i S
+
j + e−iϕ̃αS−i S

−
j

)
, (2)

where S± = Sx ± iSy and ϕ̃α = {0,−2π/3, 2π/3} are
the bond-dependent phases for the primitive vectors δα,
with δα’s and x and y axes as in Fig. 1(a). Although this
is not obvious from (2) [56], the pseudo-dipolar terms
favor the direction of the spins on a bond to be either
parallel or perpendicular to the bond [52]. Because of the
high symmetry of the lattice, the Dzyaloshinsky-Moriya
interactions are forbidden [43, 57] and we also omit the
couplings of Sx(y)’s to the out-of-plane Sz’s, referred to
as the Jz± terms, as they are negligible in YbMgGaO4

[44, 47] and do not affect our conclusions. An intuitive
derivation of the Hamiltonian is given in [58].

XXZ only.—In YbMgGaO4, electron spin-resonance
(ESR), magnetic susceptibility, and neutron scattering
[44, 47] have suggested strong XXZ anisotropy, ∆∼ 0.5,
and put rather stringent bounds on the pseudo-dipolar
terms, indicating their subleading role. Thus, we study
the pure XXZ model (1) first, considering effects of the
pseudo-dipolar terms next. The anisotropy for J1 and J2
bonds, ∆1 and ∆2, is assumed equal [47] as it originates
from the magnetic state of Yb3+ ions, with no qualitative
changes expected for ∆1 6=∆2.

While the Heisenberg version of (1) at ∆ = 1 is well-
explored [33–40], its anisotropic extension has been stud-
ied only rarely [59, 60]. For J2/J1<1, two ordered states
compete, the 120◦ and the collinear state, where in the
latter ferromagnetic rows (“stripes”) of spins align anti-
ferromagnetically, see Fig. 1(a). Their classical energies
are E120◦

gs =−3(J1/2−J2) and Estr
gs =−J1−J2 (per NS2),

yielding a transition at J2 =J1/8 [34, 35] independent of
∆. It is important to note that XXZ anisotropy leads to
an overlap of the J2-ranges of stability for magnon spec-
tra of the competing phases [58, 59]. This implies that
the spin-wave instabilities do not yield an intermediate
magnetically disordered state for S�1, favoring instead
a direct transition between the two orders.

The J2−∆ phase diagram of HJ1−J2XXZ for S= 1/2, ob-
tained via spin-wave theory (SWT) and DMRG calcula-
tions, is shown in Fig. 1(b). The color map shows the
ordered moment 〈S〉 and the 〈S〉 = 0 boundaries of a
non-magnetic phase (gray) according to SWT. The solid
black line marks the crossing of 〈S〉 from the 120◦ to the
stripe phase. It outlines a region where SWT predicts a
direct transition with no intermediate state. Note that
the SWT groundstate energies indicate this transition to
be on the left of the classical J2 =J1/8 line for ∆<1 [58].
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FIG. 1: (a) Axes, primitive vectors, and a sketch of the 120◦

and stripe states. (b) 1−∆ vs J2 phase diagram of the XXZ
model (1). The 〈S〉 color map and boundaries (solid lines)
are by SWT; dotted line is the classical phase boundary. The
shaded white area is the spin-liquid region by DMRG, see
text. The dashed line with the shaded region is the same for
the model with Hpd with |J±±|= 0.06, see Fig. 2. The error
bars mark YbMgGaO4 parameters from [47]. (c) The DMRG
scan of (1) vs J2 for ∆=0.5 with up to 2000 states.

Fig. 1(c) shows a DMRG calculation of the model (1)
for ∆ = 0.5 where J2 is varied along the length of the
cylinder so that different phases appear at different re-
gions. The orders are pinned at the boundaries and the
spin patterns give a faithful visual extent of their phases.
Similar scans for several ∆’s allow us to map out the
phase diagram of the model [33, 61]. To roughly esti-
mate the J2-boundaries for the spin liquid (SL), we use
the cut-off value of 〈S〉= 0.05, below which the system
is assumed to be in a SL state. This procedure matches
the SL boundaries for the isotropic (∆=1) J1−J2 model
found in [33] by a more accurate method. The resultant
extent of the SL phase is shown in Fig. 1(b) by the white
shaded area. We note that the 〈S〉 cut-off value that
we use may overestimate the SL region at ∆< 1 as the
anisotropy tends to stabilize ordered phases, while the
SWT clearly underestimates it, as expected.

The ellipse with error bars in Fig. 1(b) marks J2/J1 =
0.22(2) and ∆ = 0.58(2), proposed for YbMgGaO4 [47].
For these parameters (with J±± = 0), we find a close
agreement between the DMRG and SWT on the or-
dered moment, 0.29 and 0.32, respectively, implying that
YbMgGaO4 is deep in the stripe phase.



3

0 0.05 0.1 0.15 0.2 0.25J2 /J1

0

0.1

0.2

0.3

0.4

0.5

〈S
〉

∆ = 0

0.3
0.5

0.7
1.0 0.427489 ( 1, 4 ) SW# 

  -0.01
  -0.05

(a)

(b)

J2/J10 0.125 0.22

spin liquid
stripe120o

J±± =�0.06J1

�=0.5

FIG. 2: (a) DMRG results for 〈S〉 vs J2 with |J±±|=0.06J1.
Dotted and dashed lines denote classical and DMRG phase
boundaries. The error bar is the same as in Fig. 1(b). The
solid black line is the SWT result for ∆ = 0.5. (b) A long-
cylinder DMRG scan for ∆=0.5 and J±± =−0.06J1.

Pseudo-dipolar terms.—The anisotropic terms in (2)
explicitly break the U(1) symmetry of the XXZ model
(1) and are expected to pin the spin directions to the
lattice. This is indeed true for the stripe phase, in which
the pseudo-dipolar terms make the spin orientation par-
allel (J±±< 0) or perpendicular (J±±> 0) to the stripe
direction [58] as in Figs. 2(b) or 1(a), see also [57]. From
the 1/S perspective, no pinning and no change of the
classical energy occurs due to (2) for the 120◦ phase,
which, however, remains stable [58]. On the other hand,
the partially frustrated pseudo-dipolar terms in (2) lower
the classical energy of the stripe phase by −4|J±±|S2N
and expand its stability range by shifting the classical
phase boundary to a lower J2 =J1/8−|J±±|.

In Figs. 2 and 1(b), we show the effect of adding J±±
to the model, using |J±±|=0.06J1, as suggested by ESR
[44]. The classical transition between the 120◦ and stripe
phases is at J2 = 0.065J1 for this value of |J±±|, with
the DMRG long-cylinder scans showing it tilting toward
smaller J2 at smaller ∆. Using the same generous criteria
for the spin liquid as above, the DMRG results show
that J±± shrinks the SL region [light blue in Fig. 1(b)],
and moves it farther from the YbMgGaO4 parameters.
It also strengthens the stripe order [Fig. 2(a)], in close
agreement with the SWT (solid line). The agreement for
the ordered moment for YbMgGaO4 parameters [47] is
very close, 〈S〉≈0.419(0.433) by DMRG (SWT), and the
magnitude of the order parameter is large.

Thus, in this model for YbMgGaO4, the easy-plane
and pseudo-dipolar anisotropies both lead to a stronger
stripe order. Yet, the experiments show no sign of it.

Alternative sets of parameters with much larger values
of |J±±|= 0.26J1 [62] and 0.69J1 [47] were obtained by
fitting the high-field magnon dispersion in YbMgGaO4

[47] without the J2-term in (1). Both values strongly de-
viate from the ESR data [44] and imply an almost clas-
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S = 1/2. Upper inset: quantum energy correction vs angle
θ. Lower inset: a sketch of the degenerate classical ground
states with θ=0(π) corresponding to two stripe orientations.

sical stripe state with nearly saturated ordered moments
and large magnon gaps [58], inconsistent with the ob-
served substantial spectral weight at low energies [47].
For |J±±|&0.2’s, there is no 120◦ state left in the phase
diagram to compete with, leaving no SL state in sight.

Barrier.—Before we attempt to reconcile our finding
of strong stripe order in the model with the lack of or-
der in YbMgGaO4, we give the J1−J2 XXZ model (1)
a second look. Classically, in the absence of the pseudo-
dipolar terms, the stripe phases of Fig. 1(a) are degener-
ate with a manifold of spiral phases in Fig. 3, in which
four spins in the two side-sharing triangles add up to
zero [34, 35]. Their degeneracy is lifted via order-by-
disorder mechanism [63, 64], selecting the three stripe
states that break rotational lattice symmetry. The tun-
neling barrier between them, δE(J2,∆)/N , shown in
Fig. 3, is obtained from the quantum energy correction
∆E(θ) = c + 1

2

∑
k εk(θ), where c = −(J1 + J2)S and

εk(θ) is the magnon energy, which depends on the angle
θ of the spiral state from the degenerate classical mani-
fold. As one can see from Fig. 3, the tunneling barrier is
small, δE∼0.03J per site, similar to the J1−J2 model on
the square lattice [65]. Thus, in the XXZ model, despite
being strongly-ordered, the stripe phases of different ori-
entations are separated by a low energetic barrier.

Disorder.—As discussed above, a number of experi-
ments indicate a substantial disorder in the low-energy
effective spin Hamiltonian of YbMgGaO4 [43, 47, 48, 50].
Most direct are the neutron studies, suggesting strong
variations in the effective g-factors and, possibly, mag-
netic couplings [48] due to a random charge environment
from mixing of the non-magnetic Mg2+ and Ga3+.

We do not attempt to analyze all forms of disorder that
can naturally occur in the Hamiltonian (1) and (2). In-
stead, we propose that a disorder in the J±± terms should
be potentially very destructive. Because of their pseudo-
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FIG. 4: (a) Positive/negative J±± bonds in a typical disorder
realization. (b) Two stripe domains (dashed boxes) for ran-
dom |J±±|= 0.2J1, 〈S〉 up to 0.33. (c) S(q) [66] for random
|J±±|=0.1(0.05)J1. (d) Averaged S(q) from (c), see text.

dipolar nature, random J±±’s are not unlike fluctuating
pinning fields that can locally stabilize stripes with differ-
ent orientations by overcoming the low tunneling barrier
between them. In addition, for the relevant values of
|J±±|∼0.1J1&δE, fluctuations of the diagonal elements
of the exchange tensor at the level of 0.1−0.2J1, that are
consistent with the variations suggested in [48], translate
into completely random J±± [58].

We have performed DMRG calculations of the J1−J2
XXZ model (1) with YbMgGaO4 parameters, ∆ = 0.58
and J2 = 0.22J1 [47], and random J±± (2). We have
used different random disorder realizations, such as in
Fig. 4(a), with binary distribution of J±± of alternat-
ing sign and a global constraint of the same number of
positive and negative J±± bonds to reduce the finite-size
bias. We used the values of |J±±|/J1 =0.05, 0.1, and 0.2
on the 6×12 cluster. The results are as follows.

For large values of random |J±±|=0.2J1, the ground-
states tend to contain static, visibly disordered spin do-
mains with mixed stripe orientations and large ordered
moments, see Fig. 4(b). For smaller |J±±|, more inter-
esting states appear. First, there is no clear real-space
order without pinning fields, as in a disorder-free U(1)-
symmetric XXZ model, yet the structure factor [66], ob-

tained from Sαβq =
∑
i,j〈Sαi S

β
j 〉eiq(Ri−Rj), shows broad-

ened peaks at two M-points, which are associated with
two different stripe orderings, see Fig. 4(c). We note that
the 6×12 DMRG cluster strongly disfavors the state with
stripes along the shorter direction of the cylinder, paral-
lel to the open boundaries, that would show itself as a
peak at the M′ points in Fig. 4(c).

Upon a careful investigation with pinning fields, we
conclude that the observed state is a stripe-superposition
state, in which spins continue to fluctuate collectively be-
tween the two stripe states allowed by the cluster. A
hint of such a state can also be seen at the right edge of

Fig. 4(b). As opposed to a spin liquid, the degeneracy of
such a superposed state is not extensive. This finding im-
plies that the randomization of J±± leads to an effective
restoration of the Z3 lattice symmetry, broken in each in-
dividual stripe state. Whether such stripe-superposition
states will be pinned to form single-stripe domains on a
larger length scale, or they will survive as localized fluc-
tuating states, remains an open question.

Note that both |J±±|/J1 = 0.05 and 0.1 yield nearly
identical structure factors, with the smaller value already
sufficient to destroy the long-range stripe order, support-
ing our hypothesis on its fragility to an orientational dis-
order. To overcome the lack of the third stripe direc-
tion in the DMRG cluster and provide a faithful view of
a response of a spatially isotropic system, we have per-
formed an averaging of the structure factor, see Fig. 4(d),
with the results very similar to the S(q) in the neutron-
scattering data for YbMgGaO4 [47].

Altogether, the randomization of the small pseudo-
dipolar term in the model description of YbMgGaO4 re-
sults in the disordered stripe groundstates that can suc-
cessfully mimic a spin liquid. Further experimental veri-
fications of the proposed picture include possible freezing
at lower temperatures, as the current lowest-temperature
measurements [47] are at T ∼0.05J1∼|J±±|, and the spin
pseudo-gap in the dynamical response at low energies at
the M-points as a remnant of the anisotropy-induced gaps
in the magnon spectra [58]. The proposed scenario im-
plies that the anomalously low T -power in the specific
heat should emerge as a result of disorder.

Summary.—We have investigated a generalization of
the isotropic J1−J2 triangular-lattice model, known to
support a spin-liquid state, and have found that the
anisotropic interactions significantly diminish the spin-
liquid region of the phase diagram. Our analysis finds no
additional transitions near the experimentally relevant
range of parameters, putting YbMgGaO4 firmly in the
stripe-ordered state. At the same time, the stripe states
are shown to be fragile toward orientational disorder.
The randomization of the pseudo-dipolar interactions
due to spatially-fluctuating charge environment of the
magnetic ions generates a mimicry of a spin-liquid state
in the form of short-range stripe or stripe-superposition
domains. This scenario is likely to be relevant to other
rare-earth-based quantum magnets.

Note added. After submission of this work, we became
aware of the preprint supporting our findings [67].
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