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We propose a simple theory for the dynamics of model glass-forming fluids, which should be
solvable using a mean-field-like approach. The theory is based on transparent physical assumptions,
which can be tested in computer simulations. The theory predicts an ergodicity-breaking transition
that is identical to the so-called dynamic transition predicted within the replica approach. Thus, it
can provide the missing dynamic component of the random first order transition framework. In the
large-dimensional limit the theory reproduces the result of a recent exact calculation of Maimbourg
et al. [PRL 116, 015902 (2016)]. Our approach provides an alternative, physically motivated
derivation of this result.

In the last decade, the static component of the general
theoretical framework known as the random first order
transition (RFOT) theory [1–3] was developed into a con-
sistent, albeit arguably mean-field-like, description of the
glass transition [4–6]. This has been achieved by a com-
bination of the generalization of the replica approach to
amorphous systems without quenched disorder [7] with
the theoretical apparatus of the liquid state theory [8].
More recently, it has been realized that in the limit of
large spatial dimension the mean-field approach becomes
exact and the complete theory of the glass (and jamming)
transition in the infinite-dimensional hard-sphere system
has been worked out [9, 10].

On the other hand, the dynamic component of the
RFOT approach has not been advanced to the same de-
gree. This is disappointing since the glass transition,
as observed either in a laboratory or a computer experi-
ment, manifests itself most clearly through the enormous
slowing down of the dynamics. We note that within the
original p-spin version of the RFOT approach [2] (and
within the simplified hard-sphere calculation of Ref. [1])
static and dynamic components of the theory were fully
consistent. However, there is no finite-dimensional dy-
namic theory consistent with the advanced version of the
replica-based static approach. In contrast, in the limit
of large spatial dimension the dynamics of the hard-
sphere system has been solved [11]. The many-body
problem has been reduced to a one-dimensional stochas-
tic equation with colored noise, which is determined self-
consistently. At high density, this equation predicts an
ergodicity-breaking transition which is fully consistent
with the so-called dynamic transition predicted by the
large-dimensional replica calculation. This suggests that
it should be possible to come up with dynamical theories
that agree with static approaches. Unfortunately, the
physical content of the Maimbourg et al. result is a bit
obscured by a rather long derivation.

One should note at this point that until the formu-
lation of the static replica approach, the mode-coupling
theory of the glass transition [12] was the most success-
ful quantitative description of the glass transition and for
a long time it was considered to be the dynamic mean-

field theory of this transition (indeed, it was featured in
this role in the original RFOT theory papers). However,
it was discovered in the last decade [13, 14] that in the
large-dimensional limit the ergodicity-breaking transition
predicted by the mode-coupling theory is different from
the dynamic transition of the replica approach (which be-
comes exact in the large-dimensional limit). This result
showed that the mode-coupling theory does not become
exact in the large-dimensional limit and it suggested that
this theory is not the proper mean-field theory of the glass
transition in finite dimensions. The somewhat uncertain
status of the mode-coupling theory [15] is disappointing
in view of the fact that it is the starting point for most
attempts to go beyond a mean-field-like description of
the dynamics [16–18].

Our goal in this Letter is to present a simple theory
for glassy dynamics, which predicts ergodicity-breaking
transitions consistent with dynamic transitions predicted
by the replica approach. This theory can become the
missing dynamic component of the RFOT approach. The
theory is based on transparent physical assumptions.
The most important assumption is that there should be
no “loops” in the dynamics (this notion and its conse-
quences are discussed in the following). In principle, this
assumption makes the theory applicable only to mean-
field-like models of glass-forming fluids. In particular,
we show that the large-dimensional limit of our the-
ory coincides with the exact result derived by Maim-
bourg et al. In finite dimensions the situation is a bit
more complex. Additional assumptions of the theory,
the most prominent one being the Gaussian character
of the single-particle motion, make it only an approx-
imate description of the dynamics of finite-dimensional
mean-field-like models. On the other hand, analogous
assumptions are used in the replica theory description of
finite-dimensional mean-field-like models [4] (in principle,
one can avoid these assumptions; in practice, it might be
easier to do this using the cavity formalism of Mézard et

al. [19], which is physically equivalent to the replica ap-
proach). The result is that the ergodicity-breaking tran-
sition predicted by our theory for mean-field-like models
in finite dimensions is the same as the dynamic transition
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predicted by the replica description.
To make our considerations more specific, we use the

Mari-Krzakala-Kurchan model [20]. We consider M par-
ticles in d dimensional space, evolving with Brownian
dynamics. Any given particle interacts, via a spherically
symmetric potential V (r), only with N other particles,
with N ≪ M . The network specifying inter-particle in-
teractions forms a quenched random tree-like graph. This
graph does not have “loops” and thus dynamical events
in which two interacting particles interact with the same
third particle are absent. This fact makes the model solv-
able via a mean-field-like approach (at least in principle).
In particular, for this model the pair correlation function
is equal to the Boltzmann factor, g(r) = e−βV (r), with
β = 1/T (we use a system of units in which kB = 1).
At the initial time the particles are distributed according
to the canonical ensemble. We note that in the large-
dimensional limit the present model system and any sys-
tem with short-range interactions are identical. This is
due to the fact that in large dimensions the probability
of “loops” is vanishingly small for geometric reasons.
The first (although not the most important) assump-

tion of our approach is concerned with the description of
the single-particle motion: we assume that the motion of
one selected (tagged) particle in the fluid of interacting
particles can be described by the following generalized
Langevin equation with Gaussian noise,

γṙ1(t) = −
∫ t

0

M irr(t− t′)ṙ1(t
′)dt′ + η1(t) + ξ1(t). (1)

Here, γ is the friction coefficient of an isolated particle
andM irr(t) is the irreducible memory function describing
the average response of the other particles of the fluid to
the motion of the tagged particle. The memory function
is essentially a friction kernel, i.e. the first term on the
right-hand-side of Eq. (1) is the internal friction force
experienced by the tagged particle due to the presence
of other particles. Next, ηi(t) in Eq. (1) is a Gaussian
colored noise describing the fluctuating force acting on
particle i originating from the presence of the other par-
ticles. In equilibrium, the noise should be related to the
memory function by a fluctuation-dissipation relation,

〈

ηi(t)ηj(t
′)
〉

= TδijIM
irr(t− t′), (2)

where I is the unit tensor. Finally, ξi(t) in Eq. (1)
is a Gaussian white noise acting on the particle i, with
autocorrelation function

〈

ξi(t)ξj(t
′)
〉

= 2γT δijIδ(t− t′).
The generalized Langevin equation (1) can be justified

as follows. Using the standard projection operator ap-
proach one can derive an exact but formal equation for
the time evolution of the tagged density auto-correlation
function, which involves a wave-vector dependent irre-
ducible memory function. From the evolution equation
one can derive an equation of motion for the tagged par-
ticle’s mean-square displacement. The latter equation in-

volves the zero-wave-vector limit of the irreducible mem-
ory function. If the particle’s motion can be described
by a Gaussian stochastic process, then one can deduce
Eq. (1) from the time evolution of the tagged particle’s
mean-square displacement. It is possible that an exact
but formal equation similar to Eq. (1) could be derived,
but with some kind of a position dependent irreducible
memory function and non-Gaussian noise.
The second, somewhat more technical, assumption of

our approach is concerned with the irreducible memory
function. One can derive an exact but formal expression
for this function as an autocorrelation function of the
total force acting on the tagged particle evolving with
the so-called irreducible dynamics [21],

M irr(t) = β
〈

k̂ ·F1e
Ωirrt

k̂ ·F1

〉

. (3)

Here k̂ is a unit vector, F1 =
∑

i>1 F1i is the total force
acting on the tagged particle (the summation extends
over the particles that particle 1 interacts with) and Ωirr

is the irreducible evolution operator [21–23] (note that
our definition of the memory function includes an addi-
tional factor β compared with the definition of Maim-
bourg et al.). Here, following Maimbourg et al., we will
assume that the memory function can be obtained from
the pair force evolving with the standard dynamics,

M irr(t) ≈ β
∑

i>1

〈

k̂ ·F1ie
Ωt
k̂ · F1i

〉

= β
∑

i>1

〈

k̂ ·F1i(t)k̂ ·F1i(0)
〉

, (4)

where Ω is the standard Smoluchowski operator describ-
ing the motion of interacting Brownian particles. As-
sumption (4) is analogous to the central assumption of
the mode-coupling theory, where in the formal expres-
sion for the memory function a factorization approxima-
tion and replacement of the irreducible dynamics by the
standard dynamics are applied at the same step [12, 24].
The validity of assumption (4) can be checked almost

directly. One could evaluate the right-hand-side of Eq.
(4) in a Brownian dynamics computer simulation and
then calculate the time-dependence of the mean-square
displacement from this approximate irreducible memory
function. This calculated approximate mean-square dis-
placement could then be compared to the mean-square
displacement measured in the same simulation.
In general, Eq. (4) is only an approximation. For ex-

ample, for the finite-dimensional model with short-range
interactions the initial (t = 0) values of the exact mem-
ory function (3) and the approximation (4) are different.
However, for a Mari-Krzakala-Kurchanmodel, due to the
loop-less structure of the inter-particle interactions net-
work, the initial values of these functions are the same.
The second assumption, Eq. (4), suggests that one can

evaluate the memory function by calculating the force
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between two selected particles, evolving with the stan-
dard dynamics, given that at the initial time these two
particles were distributed according to probability distri-
bution ∝ k̂ · F12g(r12), where g(r12) is the equilibrium
pair correlation function.
Let us now consider the two-particle dynamics. The

force acting on one of these particles consists of the fol-
lowing parts. The first part is the force due to the second
particle. The second part describes the interaction with
the other particles of the fluid, i.e. particles different
from the interacting pair of particles. The latter force has
the structure similar to the force acting on one particle,
Eq. (1). It consists of an average part and a fluctuating
part. For a Mari-Krzakala-Kurchan model (and for any
model in the large-dimensional limit) the force acting on
the first particle and originating from other particles of
the fluid should be independent of the state of the sec-
ond particle (and vice versa). This is due to the fact
that in these models the particles that interact with the
first particle (and the particles that interact with these
particles etc.) do not interact with the second particle.
We have to emphasize here that the argument described
in this paragraph relies on our most important assump-
tion that the structure of the inter-particle interactions
is such that “loops” are absent both in the statics and in
the dynamics.
The argument formulated above leads us to assume

the following equations of motion for the dynamics of
the interacting pair of particles,

γṙ1(t) = F(r12(t)) (5)

−
∫ t

0

M irr(t− t′)ṙ1(t
′)dt′ + η1(t) + ξ1(t)

γṙ2(t) = −F(r12(t)) (6)

−
∫ t

0

M irr(t− t′)ṙ2(t
′)dt′ + η2(t) + ξ2(t).

To calculate the inter-particle force we only need the rel-
ative position, r = r1 − r2. The equation of motion for
the relative position can be obtained from Eqs. (5-6),

γ̃ṙ(t) = F(r(t)) −
∫ t

0

M̃(t− t′)ṙ(t′)dt′ + η(t) + ξ(t) (7)

where γ̃ = 1
2γ, M̃(t) = 1

2M
irr(t), η(t) =

1
2 (η1(t)− η2(t)), ξ(t) = 1

2 (ξ1(t)− ξ2(t)) and thus

〈ξ(t)ξ(t′)〉 = 2γ̃TIδ(t−t′) and 〈η(t)η(t′)〉 = ITM̃(t−t′).
We note that Eq. (7) is to be solved with the initial

condition distributed according to P (r) = nk̂ · F(r)g(r)
where n = N/V is the number density of particles inter-
acting with the tagged particle and g(r) = e−βV (r) is the
pair correlation function for the Mari-Krzakala-Kurchan
model. Then, the memory function is given by

M̃(t) =
1

2
M irr(t) =

nβ

2

∫

dr
〈

k̂ ·F(r(t)) k̂ · F(r)
〉

g(r),(8)

where r(t = 0) = r and the averaging is over noises in
Eq. (7).
We note that even though the noise η(t) is Gaussian

(since it is defined as a difference of two Gaussian noises),
the process describing the pair dynamics, i.e. r(t), is
not Gaussian. This is due to the fact that the relation
between these two processes, i.e. Eq. (7), is non-linear.
In principle, the self-consistent solution of Eq. (7) de-

termines the irreducible memory function. At present,
an analytic solution of this equation is not available. We
can, however, show that at high enough density Eqs. (7-
8) predict an ergodicity-breaking transition. To this end
we can use the argument similar to that used by Maim-
bourg et al. (see Sec. V.A.1 of Supplemental Material
for Ref. [11]).
We assume that at high enough density or low enough

temperature a two-step relaxation process sets up, with
both the mean-square displacement and the irreducible
memory function being temporarily arrested around their
respective plateau values. For times in the plateau re-
gion, both parts of the noise η(t) and the corresponding
part of the memory function can be treated as adiabati-
cally slow. It can be showed (see Supplemental Material)
that the plateau value of the memory function, M̃EA, can
be expressed as follows,

M̃EA =
nβ

2

∫

dsPslow(s)
〈

k̂ ·F(r)
〉2

s

(9)

where the distribution of the slow variable s (which is a
linear combination of the slow part of the noise and the
initial condition) reads

Pslow(s) =

∫

dr

(2πTM̃EA)d/2
e
−βV (r)−

(s−M̃EAr)2

2TM̃EA (10)

and the conditional average for a given value of the slow
variable is defined as

〈f(r)〉
s
=

∫

dre−β(V (r)+M̃EAr
2/2−s·r)f(r)

∫

dre−β(V (r)+M̃EAr
2/2−s·r)

. (11)

We should note that the specific form of Eqs. (10-11)
follows from the assumed Gaussian character of the noise.
Eq. (9) is a self-consistent equation for the plateau

value of the memory function, M̃EA. A non-zero solu-
tion of this equation signals an ergodicity-breaking tran-
sition. It can be showed (see Supplemental Material)
that Eq. (9) is equivalent to the equation determin-
ing the dynamic transition within the replica approach
[25]. One should recall that the latter equation was de-
rived using an assumption of a Gaussian “cage”, which
corresponds to our assumption of the Gaussian charac-
ter of the single-particle motion and of the noise. The
ergodicity-breaking transition predicted by Eq. (9) takes
place below a crossover density determined by power-law
fits to the computer simulation data, with the difference
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between the two decreasing with increasing dimension
[25].
Now, let us show that in the large-dimensional limit

our theory is identical to the exact result of Maimbourg
et al. First, we use the fact that in the large-dimensional
limit the relative motion of two particles that are inter-
acting at the initial time (which is the process described
by Eq. (7) with the initial condition distributed accord-

ing to P (r) = nk̂ · F(r)g(r)) proceeds predominantly
along the original direction of the relative coordinate, i.e.
along r(t = 0). In other words, in the large-dimensional
limit ∂tr̂(t) can be neglected. This allows us to focus
on the equation of motion for the inter-particle distance
r(t) ≡ |r(t)|. Using Itô’s convention we obtain,

γ̃ṙ(t) = F (r(t)) − r̂(t) ·
∫ t

0

M̃(t− t′)ṙ(t′)dt′

+T
d− 1

r(t)
+ r̂(t) · η(t) + r̂(t) · ξ(t), (12)

where F (r(t)) = r̂(t)·F(r(t)) and the first term in the sec-
ond line originates from Itô’s lemma. Since r̂(t) ≈ r̂(t′),
we can express the second term on the right-hand-side
of Eq. (12) in terms of r(t′). Next, we use the scal-
ing relationships introduced by Maimbourg et al., which
can also be deduced from the large-dimensional limit of
Eq. (9): r(t) = σ(1 + h(t)/d), γ̂ = γ̃σ2/d2 = γσ2/(2d2),

F (h) = σ
dF (r) and M(t) = σ2

d2 M̃(t), with σ being the
particle diameter. Then, in the large-dimensional limit
we get from Eq. (12) the following one dimensional
stochastic equation for the “gap” h(t),

γ̂ḣ(t) = −w′(h(t)) +

∫ t

0

M(t− t′)ḣ(t′)dt′ + η(t) + ξ(t),

(13)

where the effective force is given by −w′(h) = F (h) + T
and the noises η and ξ satisfy fluctuation-dissipation
relations 〈η(t)η(t′)〉 = TM(t − t′) and 〈ξ(t)ξ(t′)〉 =
2γ̂T δ(t − t′). Finally, from the memory function ex-
pression (4) we can get an expression for the re-scaled
function M(t),

M(t) =
βφ̂

2

∫

dh 〈F (h)F (h(t))〉 e−βw(h), (14)

where h(t = 0) = h, φ̂ is the re-scaled volume frac-

tion, φ̂ = nVd2
d/d, with Vd being the volume of a d-

dimensional sphere of radius σ/2, and the averaging is
over noises in Eq. (13).
Eqs. (13-14) are identical to the equations derived by

Maimbourg et al. In particular, these equations predict
an ergodicity-breaking transition at φ̂d = 4.807.
Let us comment on the connection of the present ap-

proach and the mode-coupling theory. The most im-
portant approximation of the latter theory is the factor-
ization approximation in which a four-point correlation

function is replaced by a product of two-point functions.
In the present approach, the analogue of this approxima-
tion would be neglecting the force term in the stochastic
equation of motion for the relative position, Eq. (7).
However, if one were just to neglect the force term in Eq.
(7), the expression (8) for the memory function would
give an infinite result. The way out is to incorporate one
of the additional approximations of the mode-coupling
theory [12] and to combine discarding the force term with
replacing the “bare” forces in the memory function ex-
pression (8) by renormalized forces given by the deriva-
tives of the direct correlation function. In the present
case of the Mari-Krzakala-Kurchan model the last step
amounts to the replacement F(r) → T∂re

−βV (r) in ex-
pression (8). It can be showed that this procedure results
in the following self-consistent equation for the plateau
value of the memory function, M̃mct

EA , where the super-
script mct indicates a mode-coupling-like approximation,

M̃mct
EA =

nβ

2

∫

drdr′

(

4πT/M̃mct
EA

)d/2
e−

(r−r
′)2M̃

mct
EA

4T

×g(r)k̂ ·F(r)g(r′)k̂ · F(r′). (15)

By rewriting the right-hand-side of this equation as an
integral in reciprocal space we can show that it is iden-
tical to Eq. (4.6’) of Ref. [1] (with additional factors of
2 in a couple of places). In the large-dimensional limit
Eq. (15) predicts an ergodicity-breaking transition at

φ̂mct
d =

√
8πe = 8.265. This finding agrees perfectly

with the numerical result of Ikeda and Miyazaki [14] ob-
tained by taking the large-dimensional limit of the stan-
dard mode-coupling equation for the non-ergodicity pa-
rameter and assuming a Gaussian form of this parameter.
We note that the mode-coupling-like version of our the-
ory predicts the ergodicity-breaking transition at a higher
value of the volume fraction. This is reasonable in that
the mode-coupling-like approach neglects direct interac-
tion between the two particles; replacing “bare” forces by
renormalized ones only partially compensates for this.
In summary, we presented here a simple theory for

the dynamics of models of structural glasses which
should be solvable using a mean-field-like approach. The
ergodicity-breaking transition predicted by our theory
coincides with the dynamic transition of the replica ap-
proach. Thus, our theory provides the dynamic counter-
part of the static replica approach.
In our theory, any given particle interacts explicitly

only with one other particle of the system. Other inter-
actions are accounted for by a combination of a friction
force and a fluctuating force.
In the large-dimensional limit our theory reduces itself

to the result of the exact calculation of Maimbourg et

al. and thus it provides an alternative, physically mo-
tivated derivation of this result. In finite dimensions it
suffers from the same problem as the current version of
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the replica approach, i.e. from an additional assumption
of the Gaussian character of the single-particle dynamics.
It would be very interesting to develop an analogue of a
cavity approach of Mézard et al. which could possibly
overcome this problem.
The simplest generalization of our theory to standard

finite-dimensional systems with non-trivial local struc-
ture is to replace the true potential in Eqs. (7-8) with
the potential of the mean force V mf(r) = −T ln g(r).
It can be showed (using the methods presented in the
Supplemental Material) that with this modification our
theory predicts an ergodicity-breaking transition which
coincides with the dynamic transition obtained within a
recent version of the replica theory for a standard finite-
dimensional system [26]. Since the result of the latter
approach agrees quite well with computer simulations,
this suggests that our theory could be generalized to de-
scribe standard finite-dimensional systems. At the same
time, our theory can shed some light onto somewhat ab-
stract considerations of the replica approach. For exam-
ple, the result of the above described modification sug-
gests that the replica approach, at least as far as location
of the dynamic transition is concerned, neglects “loops”
and thus approximates the standard hard-sphere system
by a Mari-Krzakala-Kurchan system with particles inter-
acting via the potential of mean force.
Finally, it would be interesting to start from equations

of motion for density fields and to develop an approxi-
mate theory by keeping only dynamical events which are
included in the present approach. This might be another
avenue that would allow us to avoid or relax the assump-
tion of Gaussian fluctuations and thus arrive at a theory
that both provides a reasonable, albeit mean-field-like,
description of the dynamics of finite-dimensional systems
and has the correct large-dimensional limit.
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