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Spatial properties of high-order harmonic beams produced by high-intensity laser-matter interac-
tions carry rich information on the physics of the generation process, and their detailed understand-
ing is essential for applications of these light beams. We present a thorough study of these properties
in the case of harmonic generation from plasma mirrors, up to the relativistic interaction regime.
In-situ ptychographic measurements of the amplitude and phase spatial profiles of the different
harmonic orders in the target plane are presented, as a function of the key interaction parameters.
These measurements are used to validate analytical models of the harmonic spatial phase in different
generation regimes, and to benchmark ultrahigh-order Maxwell solvers of Particle-In-Cell simulation
codes.

Plasma mirrors are dense plasmas produced at the sur-
face of solid targets when these are ionized by intense
femtosecond (fs) laser pulses [1]. Due to their solid-like
density (≈ 1023 cm−3) and to the very limited expansion
of the plasma into the vacuum on femtosecond time scale,
they specularly reflect these intense laser pulses, just
like ordinary mirrors do for low-intensity laser beams.
Plasma mirrors can therefore be used as single-shot opti-
cal devices for the manipulation of intense fs laser beams
[1–5]. At high enough intensities (& 1016 W/cm2), the
response of the plasma to the field becomes highly non-
linear, and the waveform of the laser field gets period-
ically distorted upon reflection [1, 6]. This results in
the generation of high-order harmonics (HH) [7, 8] of
the laser frequency, associated in the time domain with
trains of intense [9] attosecond light pulses.

The generated high harmonic phase and amplitude
profiles are very sensitive to the laser [11–14] and plasma
characteristics [15–19]. Understanding the properties of
these extreme ultraviolet (xuv) radiation sources and
their relation to the laser and plasma parameters is thus
essential for predictive control and subsequent applica-
tions in attoscience experiments [20, 21]. These neces-
sitate at first step to be able to fully characterize the
temporal [22, 23] and spatial properties of the harmon-
ics, which are very challenging to measure due to extreme
physical conditions.

The harmonic beam characteristics are encoded in
their spatial features at birth [11, 13, 14, 24] and a clear
insight would not only allow development of suitable
beam propagation techniques [25] but would also enable
their synthesis with powerful approaches like the attosec-
ond lighthouse scheme for the generation of isolated at-
topulses [26, 27]. The major goal of HH spatial metrology
is to understand two properties of the harmonic source,
its spatial extent and spatial curvature, which were not
simultaneously available until now: one had to be as-
sumed in order to deduce the other [11, 13, 14, 24].

In this letter, we use the recently-developed technique

of in-situ ptychography [28] to measure the spatial am-
plitude and phase profiles |En(r)| and ϕn(r) of harmonic
sources produced from plasma mirrors as a function of
the most relevant interaction parameters [16]. The study
spanning over two orders of magnitude in laser inten-
sity and one order of magnitude in plasma density scale
length accesses the two most dominant mechanisms of
HH from plasma mirrors in this regime: Coherent Wake
Emission (CWE) and the Relativistic Oscillating Mirror
(ROM) process [7, 8]. The results provide insight into
the collective dynamics of electrons at plasma surfaces
driven by ultraintense laser fields. The accurate and com-
prehensive information obtained on the harmonic spatial
properties enable us to validate analytical models [13, 14]
of the harmonic phase and benchmark numerical schemes
[29–31] used to describe nonlinear laser-plasma interac-
tion. All these are essential for future applications of
these beams.

Defining En(r) = |En(r)| exp [iϕn(r)] as the complex
field of the nth harmonic right at the output of the gen-
eration medium (with r the 2D position vector trans-
verse to the propagation direction), the field far away
from the source is determined by the spatial Fourier
transform Ẽn(k) of En(r). The divergence θn of this
harmonic beam is related to the width ∆k of |Ẽn(k)|2,
through θn ∝ ∆k/kn (with kn = 2π/λn the nth harmonic
wavevector). This width is imposed by two factors, both
intimately linked to the physics of the harmonic genera-
tion process.

The first one is the spatial extent of |En(r)|, which de-
fines the size wn of the harmonic source. This source
size is typically a fraction of the laser focal spot size
wL, due to the intrinsic non-linearity of the genera-
tion mechanism. The second key quantity is the har-
monic spatial phase ϕn(r). It originates from the depen-
dence of the harmonic phase on the laser field amplitude,
ϕn(r) = ϕn [a(r)] (a(r) normalized laser vector poten-
tial at transverse position r in the interaction plane).
This dependence is dictated by the laser-driven dynam-
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ics of the physical system (e.g. plasma mirrors, atomic
or molecular gases) involved in the harmonic generation.
In all generation processes discovered until now, this spa-
tial phase has been found to have a major impact on the
beam divergence [11, 12, 32].

We first briefly introduce the CWE and ROM mech-
anisms, discuss the origins of the spatial phase ϕn(r) of
the associated harmonic sources, and use existing analyt-
ical models to present the main features of these phases.
We start with CWE [33], which is typically dominant for
a ≤ 1 and sharp density gradients L . λ/20 [16] (with
L the scale length of the density gradient at the plasma
surface, which characterizes the steepness of the plasma-
vacuum interface). In this regime, attosecond pulses are
emitted by collective electronic plasma oscillations ex-
cited within the overdense part of the density gradient
(see density map in Fig.1a and its inset). These plasma
oscillations are triggered once every optical period by
electronic density peaks, formed by the crossing of trajec-
tories (i.e. a caustic) of fast electrons injected from the
plasma surface towards the bulk by the incident laser
field (so-called Brunel electrons [34]). The higher the
laser field strength, the larger the effective propagation
velocity of this caustic inside the plasma, and the earlier
the attosecond pulses are emitted within the laser opti-
cal cycle -an effect described by an intensity-dependent
emission time τe(a) [12, 13].

An analytical expression of τe(a) has been derived in
[13], by calculating the shape of the caustic formed by
electron trajectories. Using this expression, and a Taylor
expansion of a(r) = a0 exp(−r2/w2

L) ≈ a0(1 − r2/w2
L)

around the center of the focal spot, we find [41] that the
spatial phase of CWE harmonics is ϕn(r) = ωnτe [a(r)] =
knr

2/2R, with the wavefront curvature 1/R given by:

w2
L

λLR
= −η

[
L

λL
× 1

a0

]1/3
(1)

where η = 1.45/3 ×
(
2 ln(n/ cos θ)/ sin θ

)1/3
, λL is the

laser wavelength, and θ the incidence angle on target.
Note that the dependence on harmonic order n (through
η) is very weak and can be neglected in practice. This
curvature of the attosecond beam wavefronts right after
the target is clearly observed in the simulation results of
Fig.1a. As attosecond pulses are emitted earlier near the
center of the focal spot than on the edges (where the caus-
tic velocity is lower), the harmonic beam has diverging
wavefronts in the source plane (Fig.1a). The curvature
1/R is plotted in Fig.1b as a function of the two key phys-
ical parameters of the interaction, a0, the peak amplitude
of the laser field at the center of the focal spot, and L.
The larger L, or the lower a0, the stronger the curvature,
because the variation of τe [a(r)] ∝ (L/a0)1/3 across the
focal spot gets larger in magnitude, as Brunel electrons
need on average more time to go from the critical density

FIG. 1. Spatial properties of high-order harmonics and at-
tosecond pulses. Panels a and c show results of 2D Particle-
in-Cell simulations, respectively in the CWE (a0 = 0.4,
L = λL/30) and ROM (a0 = 3, L = λL/10) generation
regimes, plotted here in a Lorentz frame [35] where the laser
field is normally incident on the plasma (θ = 45o in the labo-
ratory frame). The gray scale map shows the plasma electron
density at a given time in a laser optical cycle. The color map
shows the wavefronts of a single attosecond pulse (harmon-
ics 4 to 12), emitted during the same cycle but plotted at a
slightly later time, after it has propagated in vacuum. Panels
b and d show the absolute value of the wavefront curvature
1/R (in units of λL/w

2
L) of the harmonic beam for these two

generation mechanisms, predicted by analytical models (Eqs.
1 and 2), as a function of a0 and L. The black crosses indicate
the physical conditions used in panels a and c.

surface to the dense part of the plasma.

The second mechanism is the ROM process, which gen-
erally dominates for a ≥ 1 and longer density gradients
L & λ/20 [16]. In this case, attosecond pulses result from
the periodic Doppler upshift induced on the reflected
laser waveform by the laser-driven relativistic oscillation
of the plasma mirror surface. At these much higher in-
tensities, the time-averaged Lorentz force exerted by the
laser on the plasma mirror can make its surface drift
inwards by a fraction of the laser wavelength. As the
laser intensity is in most cases spatially non-uniform on
target, this displacement δx varies across the irradiated
spot, thus creating a concave emitting plasma surface
[11]. This effect is clearly observed on the plasma den-
sity distribution (Fig.1c), and has been modeled and cal-
culated analytically in [14]. This in turn results in a
temporal delay τe(r) = 2 cos θδx(r)/c on the emission
of ROM attosecond pulses, associated to a spatial phase
ϕn(r) = ωnτe(r) of the nth harmonic, which now cor-
responds to converging wavefronts (Fig.1c) -i.e. the at-
tosecond pulses get focused in front of the plasma surface.
Using the same Taylor expansion of a(r) as before, this
phase is given by ϕn(r) = kn r

2/2R, with 1/R the curva-
ture of the harmonic wavefront, identical for all harmonic



3

orders [41]:

w2
L

λLR
= 4 cos θ × a0 ×

L

λL
× 2α(1 + αa0) + β

(1 + αa0)2 + βa0
(2)

with α and β two parameters depending on L and θ,
respectively associated to the plasma ion and electron
dynamics. Like in the CWE case, this curvature of the
attosecond beam wavefronts right after the target is ob-
served on the simulations results of Fig.1c.

This curvature is plotted in Fig.1d, as a function of a0
and L. It again increases with L, because a softer plasma
gradient is more easily deformed by the incident field. It
always tends to increase with a0, but this dependence
gets weak as soon as a0 > 4 − 5. From Eq.2, this is
because 1/R → 4L/w2

L when a0 � 1/α, β/α2. Note
that for both CWE and ROM, the wavefront radius of
curvature R scales as w2

L/λL (≈ 20 µm for wL = 4 µm
and λL = 0.8 µm), and tends to be smaller from CWE
(stronger curvature) than for ROM [12], as observed in
Fig.1 b,d.

This shows how the wavefront curvature 1/R of har-
monic beams in the source plane is directly related to the
dynamics of the plasma in the ultraintense laser field. Ac-
cessing this phase profile experimentally is however very
challenging. Measurements of the harmonic beam ampli-
tude and phase profiles far away from the target are pos-
sible [36, 37], but deducing the phase profile in the source
plane would then require the knowledge of the propaga-
tion distance from the source to the measurement plane
with sub-100 µm accuracy, which would be extremely
challenging in practice. ϕn(r) can be inferred from mea-
surements of the harmonic beam divergence in the far
field [14], but only with the use of additional information
on the source size wn (e.g. obtained from simulations).
At present, phase-retrieval techniques constitute the only
accurate way to access the harmonic wavefront curvature
in the target plane. Here, we use the measurement tech-
nique demonstrated in [28], which is a particular case of
the lensless imaging method called ptychography.

This technique consists in measuring the diffrac-
tion patterns I(k, r0) produced by a probe beam E(r)
diffracted out by an object O(r), for different relative po-
sitions r0 between the probe and object. Phase-retrieval
algorithms enable the complete reconstruction, in ampli-
tude and phase, of both the object and the probe spatial
profiles from this set of data [38, 39]. It has recently
been adapted to the spatial characterization of harmon-
ics beams from plasma mirrors [28], by generating these
harmonics on a spatially-modulated plasma mirror sur-
face that acts as the object O(r). This harmonic beam
thus constitutes the probe E(r), which is here directly
generated on the object, instead of being provided by an
external source as in usual ptychography. The modu-
lated plasma mirror surface can be obtained in-situ by
optically microstructuring an initially flat solid target,

using a combination of two interfering prepulse beams to
trigger a spatially-modulated plasma expansion [40]. The
diffraction pattern produced by this modulated plasma
surface is measured as a function of r0 for each harmonic
order, using an angularly-resolved xuv spectrometer [41].
A single experimental scan of r0 thus simultaneously pro-
vides one ptychographic dataset for each observable har-
monic order. All measurements presented below have
been performed with the UHI100 laser, the 100 TW-25
fs high-contrast Ti-Sapphire laser of CEA Saclay.

Two typical phychographic datasets measured for the
12th harmonic, each consisting of ≈ 100 laser shots, are
displayed in Fig.2a and 2b, respectively in the CWE and
ROM generation regimes. The spatial amplitude and
phase profiles of the harmonic source in the target plane
are then reconstructed by applying a phase-retrieval al-
gorithm to these datasets and displayed in panels c and d
for four different harmonic orders [41]. From these pro-
files, the two parameters that determine the harmonic
beam divergence, the source size wn and the wavefront
curvature 1/R, can be obtained as a function of harmonic
order. These are plotted in panels e-g for CWE and f-h
for ROM (red and orange dots), for all harmonic orders
observed in these scans.

The harmonic source size wn is close to the laser focal
spot size (≈ 75%) in the case of CWE, and only weakly
varies with harmonic order, except for the highest or-
der. This is due to the weak dependence of the harmonic
generation efficiency on laser intensity, i.e. to the weak
non-linearity of this generation process [8, 33]. In con-
trast, the source size of ROM harmonics is a small frac-
tion (. 30% for 11th order) of the laser source size, and
decreases with harmonic order down to ≈ 12% for the
26th harmonic. This is consistent with the stronger non-
linearity of this generation mechanism, especially in this
range of laser field amplitude [8], close to the onset where
ROM starts coming into play. Another striking feature
is the strong difference in the shapes |En(r)| of these
two types of sources: while the ROM sources preserve
the quasi-Gaussian shape of the laser focus, the CWE
sources display super-Gaussian profiles, which might in-
dicate a saturation of the generation mechanism around
the center of the laser focus.

These results are compared to the source sizes de-
rived from 2D PIC simulations performed with the code
WARP+PXR [29, 30] in these two generation regimes.
Two types of Maxwell solvers have been used for these
simulations: a standard second-order Yee solver [42]
(grey curves), and a recently developed ultrahigh-order
spectral solver [31] (black curves) that greatly reduces nu-
merical dispersion of electromagnetic waves as well as nu-
merical noise. In the CWE regime, the results obtained
with the spectral solver agree very well the experimental
results (including the sudden reduction in source size ob-
served for the last harmonic order), while this is not the
case at all for those obtained with the Yee solver, due
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FIG. 2. Typical ptychographic measurements of harmonic beams produced by plasma mirrors. Panel a and b show ptycho-
graphic datasets measured for the 12th harmonic, in the CWE (a0 = 0.2, L = λL/35) and ROM (a0 = 1.65, L = λ/8) generation
regimes. d is the spatial period of the transient plasma grating used for the measurement. The amplitude (full lines) and phase
(dashed lines) spatial profiles of the harmonic source retrieved from such measurements are shown in panel c and d, for four
harmonic orders in each case. The harmonic source size wn (red plot, in units of laser focal spot size w0) and the wavefront
radius of curvature |1/R| (orange plot, in units of λL/w

2
0) are respectively displayed in panels e-f and g-h, for all harmonic

orders observable in these scans. The source sizes obtained from 2D PIC simulations in the same interaction conditions as these
experiments are shown in panels e-f, in the cases of a second-order Yee solver (grey plot) and a ultrahigh-order (order=128 was
used here) spectral solver (black plot) for Maxwell’s equations. The dashed lines in g-h correspond to the predictions of Eq.1
and 2.

to the much stronger numerical noise. These measure-
ments thus provide a stringent test of the performances
of Particle-In-Cell simulation codes. In the ROM regime,
for both solvers, the numerical results properly repro-
duce the evolution of the source size with harmonic or-
der, although they provide values that are slightly larger
than the experimental results, by about 10% at the low-
est harmonic orders for the spectral solver, and about
twice more for the Yee solver.

The phase profiles presented in Fig.2c-d provide a di-
rect confirmation of the very contrasted properties of
CWE and ROM harmonic beams. Clear phase curva-
tures are observed in both cases, which are of opposite
signs for these two mechanisms, as expected from the
physics of the generation. The magnitude of the har-
monic spatial phase increases with harmonic order in
both cases, but tends to be larger for CWE than for
ROM. By fitting the central part of ϕn(r) by a second-
order polynomial knr

2/2Rn [41], we extract a measured
wavefront curvature 1/Rn for each harmonic order, plot-
ted in orange in Fig.2g-h. This wavefront curvature
is found to be quasi-independent of harmonic order,
1/Rn = 1/R, thus validating a key physical prediction
of both previously described theoretical models.

We studied the evolution of this ’effective surface cur-
vature’ 1/R by performing several ptychographic mea-
surements for different values of a0 (varied using an at-
tenuator) and L (varied by changing the delay between
the two prepulses and the main pulse) [41]. For each of

these measurements, we applied the same data process-
ing as in the case of Fig.2, and obtained a curvature 1/Rn

that was in all cases found to be independent of harmonic
order [41], 1/Rn = 1/R, as in Fig.2g-h. The results of
this parametric study are shown as dots in Fig.3 for the
ROM and CWE mechanisms. The multiple evaluations
of 1/R obtained from a single ptychographic scan (be-
tween 8 and 16, i.e. one for each measured harmonic
order, see Fig.2g-h) allows calculation of the error bars
in Fig.3.

Figure 3 also compares these experimental results to
the predictions of the analytical models of the phase cur-
vature (Eq.1 and Eq.2), shown as full lines. These theo-
retical predictions require the determination of two sets
of parameters (a0, L)i corresponding to the experimen-
tal points. This is achieved based on the relative vari-
ations of these two parameters, which are known with
a good accuracy since they are directly determined by
well-controlled experimental parameters [41]. With this
procedure, our measurements provide a very stringent
test of the evolution of 1/R with these interaction pa-
rameters, which validates the analytical models of the
effective surface curvature.

In conclusion, we have presented an advanced metrol-
ogy study of ultrahigh-intensity laser-plasma interac-
tions, incorporating ∼ 104 measurements (Fig.3), which
unravels the contrasting amplitude and phase behaviour
of CWE and ROM mechanisms (Fig.2). Enabling exper-
imental access to the properties of the harmonic beams
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FIG. 3. Measured curvatures |1/R| of the harmonic wave-
fronts in the CWE and ROM regimes, as a function of the
laser amplitude a0 and the density gradient scale length L.
These points are the results of ≈ 11× 100 = 1100 laser shots,
which provide ≈ 13000 independent harmonic angular profiles
(one for each harmonic order in each laser shot) used in the
ptychographic analysis. The full lines show the predictions of
the analytical models (Eq.1 and Eq.2).

right in the target plane, it provides firm validation of an-
alytical models for the phase properties of high-order har-
monic beams produced from plasma mirrors, both in the
non-relativistic and relativistic regimes, and a benchmark
for simulation codes. The measurements have direct rele-
vance to new powerful techniques like two color relativis-
tic control at attosecond time scales [43] and can easily
be extended to the few cycle regime [5, 44, 45]. These
models will be essential for the optimization of future
light sources based on this type of interaction. Complete
analytical formulations of the spatial properties would
need predictive models of the harmonic source size wn

for both CWE and ROM that is still a great challenge
requiring dependence of the generation efficiency on laser
intensity. This calls for quantitative models of the entire
harmonic generation process, that are still missing today.
The work presented here is a step forward towards this
ambitious goal.
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