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We present the calculation of dijet production, doubly-differential in dijet mass, mjj and rapidity
difference, |y∗|, at leading colour in all partonic channels at next-to-next-to-leading order (NNLO)
in perturbative QCD. We consider the long-standing problems associated with scale choice for
dijet production at next-to-leading order (NLO) and investigate the impact of including the NNLO
contribution. We find that the NNLO theory provides reliable predictions, even when using scale
choices which display pathological behaviour at NLO. We choose the dijet invariant mass as the
theoretical scale on the grounds of perturbative convergence and residual scale variation and compare
the predictions to the ATLAS 7 TeV 4.5 fb−1 data.
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The production of jets in the final-state is one of the
most frequently occurring reactions at hadron colliders,
such as the LHC. When at least two jets are produced,
the two jets leading in transverse momentum, pT , con-
stitute a dijet system. Such systems are a powerful tool
when searching for physics beyond the Standard Model
by “bump hunting” in the dijet mass spectrum [1–4] or
testing the QCD running coupling to very large momen-
tum transfer [5, 6]. Even in the case of no new physics
being found, dijet observables offer a win-win scenario
as they can provide valuable information on important
Standard Model parameters such as the strong coupling,
αs, and the Parton Distribution Functions (PDFs).

To fully exploit the wealth of available data it is im-
portant to have a reliable and accurate theoretical pre-
diction. The dijet observables considered in this letter
are currently known to NLO accuracy in perturbative
QCD [7–11] and electroweak effects [12–14]. Although
the NLO corrections give an improvement on the LO pre-
diction, there remains significant theoretical uncertainty
associated with the NLO calculation. It is well known
that the parametric choice of scales for renormalization,
µR, and factorization, µF , has a big impact on the pre-
dictions at NLO and, for this reason, the dijet data is
regularly excluded from global PDF fits. To improve the
theoretical description of dijet observables and make a
meaningful comparison to data it is therefore necessary
to calculate dijet production to NNLO accuracy. The
NNLO correction to jet production was first discussed in
the context of the single jet inclusive cross section [15, 16]
and in this letter we report, for the first time, the NNLO
corrections to dijet production.

At hadron colliders, jets are reconstructed by applying
a jet algorithm [17] and ordered in transverse momentum.
The LHC experiments have measured dijet events [18, 19]
at 7 TeV as distributions in the dijet invariant mass, mjj ,

m2
jj = (pj1 + pj2)2, (1)

where pj1,2 are the four-momenta of the two leading jets
in an event satisfying the fiducial cuts, and the rapidity
difference, |y∗|, where,

y∗ =
1

2
(yj1 − yj2), (2)

and yj1,2 are the rapidities of the two leading jets. For
two exactly balanced (back-to-back) jets, the invariant
mass is related to the transverse momentum, pT , and y∗

variables by the simple relation,

mjj = 2pT cosh(y∗). (3)

This relation always holds at leading order (LO) but is
modified at NLO and NNLO by the presence of addi-
tional real radiation contributions. It is evident from
Eq. (3) that a minimum pT cut translates to a minimum
accessible value of mjj which increases with |y∗|, such
that in bins of large |y∗| only large values of mjj are
experimentally accessible.

The longitudinal momentum fractions of the incoming
partons can, for back-to-back jets, be written in terms of
the final-state jet parameters using momentum conserva-
tion,

x1 =
1

2
xT (e+yj1 + e+yj2 ) = xT e+ȳ cosh(y∗),

x2 =
1

2
xT (e−yj1 + e−yj2 ) = xT e−ȳ cosh(y∗), (4)

where xT = 2pT /
√
s and ȳ = 1

2 (y1 + y2) is the rapidity
of the dijet system in the lab frame. From Eq. (4) it is
clear that for small values of ȳ the dijet data probe the
configuration x1 ≈ x2, with the x-values determined by
the pT of the jets. For large rapidities the data probes
the scattering of a high-x parton off a low-x parton. By
binning the data in |y∗|, these configurations are smeared
out across the distribution and so a single bin in |y∗|
will contain a wide range of possible x-values. This is
in contrast to binning in the maximum rapidity ymax, as
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FIG. 1: Ratio of theory predictions to data for 0.0 < |y∗| < 0.5 (left) and 1.5 < |y∗| < 2.0 (right) for the scale choices µ = mjj

(top) and µ = 〈pT 〉 (bottom) at LO (green), NLO (blue) and NNLO (red). Scale bands represent variation of the cross section
by varying the scales independently by factors of 2 and 0.5.

was done for dijet studies at the DØ experiment [20], or
the triply differential distribution in pT1

, y1 and y2 (or
alternatively, average jet pT , |y∗| and |ȳ|) [21, 22], which
would provide more specific information on the x-values
probed.

The data sample we compare to is the ATLAS 7 TeV
4.5 fb−1 2011 data [19]. This constitutes the recording
of all events with at least two jets reconstructed in the
rapidity range |y| < 3.0 using the anti-kt algorithm with
R=0.4 such that the leading and subleading jets satisfy
a minimum pT cut of 100 GeV and 50 GeV respectively.

As detailed in [15], we include the leading colour
NNLO corrections in all partonic sub-processes. The cal-
culation is performed in the NNLOJET framework, which
employs the antenna subtraction method [24, 25] to re-
move all unphysical infrared singularities from the matrix
elements [26–28]. We use the MMHT2014 NNLO parton
distribution functions [30] with αs(MZ) = 0.118 for all
predictions at LO, NLO and NNLO to emphasize the role
of the perturbative corrections at each successive order.

At any given fixed order in perturbation theory, the
predictions retain some dependence on the unphysical
renormalization and factorization scales. The natural
physical scale for dijet production is the dijet invariant
mass, µ = mjj , which has not been widely used in di-
jet studies to date. Another scale, which was used at
DØ [20] and is currently used by CMS [18] is the average
pT of the two leading jets, µ = 〈pT 〉 = 1

2 (pT1
+ pT2

).

In Fig. 1 we show the predictions at LO, NLO and
NNLO for these two scale choices at small and large |y∗|.
For small |y∗|, both scale choices provide reasonable pre-
dictions with largely overlapping scale bands, reduced
scale variation at each perturbative order, convergence of
the perturbative series and good description of the data.
For the larger |y∗| bin we see significant differences in the
behaviour of the predictions for the two scales. For the
µ = mjj scale choice, the behaviour is qualitatively sim-
ilar to what is seen at small |y∗|; in contrast, the NLO
prediction with µ = 〈pT 〉 falls well away from the LO

prediction and is even outside the LO scale band. For
this scale choice, the NLO contribution induces a large
negative correction, which brings the central value in line
with the data but with a residual scale uncertainty of up
to 100%. Indeed for |y∗| >2.0 the scale band for µ = 〈pT 〉
widens further and even includes negative values of the
cross section. These issues are resolved by the inclusion
of the NNLO contribution such that the NNLO predic-
tion is positive across the entire phase space and provides
a good description of the data. With the issue of un-
physical predictions resolved, we are free to make a scale
choice based upon more refined qualities such as per-
turbative convergence and residual scale variation. On
this basis we choose the theoretical scale µ = mjj and
present detailed results using this scale choice throughout
the rest of this letter. It should be noted that these find-
ings on the scale dependence can not be transferred to
single-jet inclusive production [15], which is a completely
different observable: each event contributes exactly once
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FIG. 2: The dijet cross section as a function of invariant
mass, mjj , for the six bins of |y∗|, compared to ATLAS 7 TeV
4.5 fb−1 data.
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FIG. 3: NLO/LO (blue), NNLO/NLO (red) and NNLO/LO
(purple) K-factors double differential in mjj and |y∗|. Bands
represent the scale variation of the numerator. NNLO PDFs
are used for all predictions.

to the di-jet production, while yielding multiple entries
with different kinematical variables (and consequently a
much broader range of scale choice) in the single-jet in-
clusive cross section.

In Fig. 2 we present the absolute cross section as a
function of mjj for each |y∗| bin, compared to NNLO-
accurate theory. We observe excellent agreement with
the data across the entire kinematic range in mjj and
|y∗|, with up to seven orders of magnitude variation in
the cross section. The total NNLO prediction shown in
Fig. 2 is the sum of LO, NLO and NNLO contributions.
We can understand the relative shift in the theoretical
prediction from each perturbative correction by examin-
ing the K-factors shown in Fig. 3. We observe moderate
NLO/LO corrections from +10% at low mjj and |y∗| to
+50-70% at high mjj and high |y∗|. The NNLO/NLO K-
factors are typically < 10% in magnitude and relatively
flat, although they alter the shape of the prediction at
low mjj and low |y∗|.
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FIG. 4: The NLO (blue) and NNLO (red) theory predictions
and ATLAS data normalized to the NLO central value. The
bands represent the variation of the theoretical scales in the
numerator by factors of 0.5 and 2. Electroweak effects are
implemented as a multiplicative factor and shown separately
as the green dashed line.

To emphasize the size and shape of the NNLO correc-
tion, in Fig. 4 we show the distributions normalized to
the NLO prediction. On the same plot we show the pub-
lished ATLAS data, also normalized to the NLO theory
prediction. We observe good agreement with the NNLO
QCD prediction across the entire dynamical range in mjj

and |y∗| and a significant improvement in the description
of the data for low mjj and |y∗|, where NLO does not
adequately capture the shape nor the normalization. We
include the electroweak effects as a multiplicative factor,
as calculated in [12], and note that in the region where
they are non-negligible (|y∗| < 0.5, mjj > 2 TeV) they
improve the description of the data.

We generally observe a large reduction in the scale vari-
ation and small NNLO corrections. An exception to this
conclusion is found at low mjj and |y∗| < 1.0; in this
case we observe NNLO scale bands of similar size to the
NLO bands, and a negative correction of approximately
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10% such that the NNLO and NLO scale bands do not
overlap. To understand this behaviour in more detail we
investigate specific bins of mjj and |y∗| and study the
scale variation inside that bin, as shown in Fig. 5.

The left pane of Fig. 5 shows the scale variation in the
bin 370 GeV < mjj < 440 GeV and 0.0 < |y∗| < 0.5,
which is the region where the NLO and NNLO scale
bands do not overlap. For fixed µF it is clear that the
central scale choice µR = mjj lies close to the extremum
of the NLO curve; and the predictions for upper and
lower variations of µF cross each other in the vicinity
of this central scale. As a consequence, the NLO scale
variation both in µR and µF is accidentally minimized.
The shape of the NLO curve also ensures that the scale
variation is asymmetric, which can be seen in the corre-
sponding bin in Fig. 4. Notwithstanding the variation in
the range 0.5 < µR/mjj < 2, the NNLO curve is clearly
flatter and displays less variation than the NLO curve
over the full range shown in the left pane of Fig. 5. This
suggests that the non-overlapping NLO and NNLO scale
bands in this bin is due to the NLO band underestimat-
ing the theoretical uncertainty whereas the NNLO band
provides a more reliable estimate. The centre and right
panes of Fig. 5 show the same quantities in bins of larger
mjj and |y∗| and we see that in these bins the central
scale choice µR = mjj does not lie near the extremum of
the NLO curve, and far away from a crossover point, so
we obtain a more reliable NLO scale variation. We see
that the NNLO curves are once again flatter and so we
obtain a significant reduction in the scale variation with
overlapping NLO and NNLO scale bands.

In summary, we have presented the first calculation of
dijet production doubly differential in mjj and |y∗| at
NNLO and compared to the available ATLAS data. We
find that the ambiguities and pathologies of the theory
prediction for certain scale choices at NLO, in particu-
lar the µ = 〈pT 〉 scale choice, are removed by including
the NNLO contribution. We find that the scale choice

µ = mjj provides a nicely convergent perturbative series
with significant reduction in scale variation at each order
in perturbation theory. In particular, the NNLO scale
uncertainty is smaller than the experimental uncertainty
for this observable. Overall we observe small NNLO ef-
fects which are reasonably flat in mjj and excellent agree-
ment with the data, with the only exception being at low
mjj and low |y∗| where the moderate NNLO correction
improves the description of the data. In this region the
NLO and NNLO scale bands do not overlap but this can
be accounted for by the NLO scale band underestimating
the perturbative theory uncertainty; whereas we expect
the NNLO scale band does provide a reliable estimate.

It is clear from considering the theoretical uncertainty
arising from the parameterization of the scale choice, and
the scale variation about that central scale, that we ob-
tain a reliable theoretical prediction for dijet production
for the first time at NNLO. In doing so, the calculation
reported here clears the way for previously unavailable
phenomenological studies using dijet data.
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