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The generation of free energy landscapes corresponding to conformational equilibria in complex
molecular systems remains a significant computational challenge. Adding to this challenge is the
need to represent, store, and manipulate the often high-dimensional surfaces that result from rare-
event sampling approaches employed to compute them. In this Letter, we propose the use of
artificial neural networks as a solution to these issues. Using specific examples, we discuss network
training using enhanced-sampling methods and the use of the networks in the calculation of ensemble
averages.

One of the outstanding challenges in the computa-
tional molecular sciences is the accurate generation of
free energy surfaces (FESs) associated with conforma-
tional equilibria of complex systems. FESs are ubiqui-
tous in the molecular sciences, whether the problem is
to determine the conformational preferences of peptides
and proteins, to predict and rank polymorphs of a molec-
ular crystal, or to identify the binding sites of molecules
to a surface. FESs are typically represented in terms
of a set of order parameters or coarse-grained variables
(CGVs) whose values correspond to a set of collective
functions of the primitive atomic coordinates; these func-
tions are known as collective variables (CVs). As the
CVs should ideally be chosen to capture the slow modes
of the system, as their number grows, so does the num-
ber of minima and saddle points that characterize the
FES. If the saddles are of sufficiently high energy that
the probability to cross them is low, then rare-event or
enhanced sampling methods such as metadynamics [1–3],
adiabatic free energy dynamics [4] and its variants [5, 6],
and temperature-accelerated molecular dynamics [7] are
needed in order to generate an FES.

If a system is sufficiently complex, determining an opti-
mal set of CVs is far from trivial and remains a consider-
able challenge. In some instances, it might be possible to
discover optimal CVs in the course of a calculation using
automated manifold learning techniques if sufficient sam-
pling can be achieved [8–11]. Often, however, these are
chosen a priori based on an intuitive guess guided by an
understanding of the physics of a system. In such cases,
in order to capture the essential conformational equilibria
in a system, it can be useful to employ a set of CVs that
contains some redundancy. However they are chosen, the
number of CVs/CGVs needed to characterize a FES can
be rather large, giving rise to a high-dimensional FES
(HDFES). Although the aforementioned enhanced sam-
pling methods are generally capable of generating HD-
FESs, the volume of data associated with such a surface
is big, which gives rise to a problem of representing and

storing a HDFES. Moreover, as free energy is the genera-
tor of numerous equilibrium properties, it is often neces-
sary to be able to perform calculations with an HDFES,
which, in principle, requires having an analytical form for
it.

In this Letter, we propose the use of machine learning
(ML) [12] techniques, specifically artificial neural net-
works (ANNs), as a solution to the aforementioned is-
sues. ANNs, which have recently been employed in the
generation of model potential energy surfaces [13] and
characterization of local structure in polymorphic sys-
tems [14], provide a compact representation of an HD-
FES, are flexible in their mathematical structure, can
be trained using stochastic optimization techniques on
free energy or gradient data generated via enhanced sam-
pling methods, and are sufficiently smooth that they can
be subsequently employed in Monte Carlo or molecular
dynamics calculations in order to compute equilibrium
observables. Although ML methods such as Gaussian
Process Regression have been used to explore and rep-
resent FESs [15–17], to our knowledge, this is the first
attempt to employ ANNs in this context. Here, using
training data generated from enhanced sampling calcula-
tions [5], we construct ANN representations of the FESs
of small peptides, specifically the alanine di- and tripep-
tides, as test two- and four-dimensional surfaces, respec-
tively and evaluate their performance against accurate
benchmark FESs [18]. Then, we employ ANNs to repre-
sent two HDFES: the ten-dimensional FES corresponding
to the five-residue oligopeptide met-enkephalin and the
five-dimensional FES describing different crystal phases
of xenon. For both examples, we use the trained net-
works to compute a relevant equilibrium observable: the
NMR J-coupling parameters for met-enkephalin and the
isothermal compressibility for crystal xenon.

Consider a system of N atoms having positions
r1, ..., rN ≡ r interacting via a potential U(r) at tem-
perature T . The conformational space of interest is
assumed to be characterized by a set of n CVs de-
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noted q1(r), ..., qn(r), and the FES is then given by
A(s1, ..., sn) = −β−1 lnP (s1, ..., sn), where P (s1, ..., sn)
is the marginal probability distribution

P (s) = N−1

∫
dNr e−βU(r)

n∏
α=1

δ (qα(r)− sα) (1)

Here, N =
∫

dNr exp(−βU(r)), β−1 = kBT , and
s1, ..., sn ≡ s denotes the set of CGVs. Direct sampling of
P (s) on an n-dimensional grid rapidly becomes infeasible
as n grows beyond three or four dimensions, and indeed,

enhanced sampling methods like adiabatic free energy dy-
namics and temperature-accelerated molecular dynamics
are designed to sample P (s) “on the fly”. Given this, the
data generated by such methods can serve as more than
mere samples of the marginal distribution: they can be
used as the training data for ML models of the FES from
which free energy values at points not sampled in the
calculations can be predicted. If the chosen ML model is
an artificial neural network with K hidden layers and M
nodes in each layer, then the FES is represented in the
form

AANN(s; w) = H
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The parameters w denotes a complete set of fitting pa-
rameters, with wνik connecting node i of layer ν with node
k of layer ν + 1, and h(x) and H(x) are activation func-
tions. In general, we allow the number of nodes in each
hidden layer to be different, as denoted by the values
of m1, m2,..., mK . A schematic of a neural network is
shown in Fig. 1. In essence, the ANN is being employed
to “learn” the integrals in Eq. (1).

Suppose an enhanced sampling calculation generates
M values of the free energy A(λ) at values s(λ) ≡
s
(λ)
1 , ..., s

(λ)
n of the CVs, where λ = 1, ...,M . Then, the

fitting is accomplished by setting up the cost function

E(w) =
1

2M

M∑
λ=1

∣∣∣∣AANN

(
s(λ); w

)
−A(λ)

∣∣∣∣2 (3)

FIG. 1: Schematic representation of an artificial neural net-
work that takes in n CGV values and outputs the free energy
A(s) and possibly its gradient ∂A/∂sα. The network contains
m1,m2, ...,mK nodes each of K hidden layers. In each node,
xij are the arguments of the activation functions in Eq. (2).

which is then minimized with respect to w, i.e., find the
solution of ∇wE(w) = 0 to yield an optimal set of pa-
rameters w for the given training set.

In some cases, it might be more advantageous to gen-
erate free energy gradient data from enhanced sampling
calculations [19, 20], in which case, training of the net-
work can also be achieved using a cost function:

EG(w) =
1

2M

M∑
λ=1

n∑
α=1

∣∣∣∣ ∂

∂s
(λ)
α

AANN

(
s(λ); w

)
+ F (λ)

α

∣∣∣∣2
(4)

where F
(λ)
α = −∂A/∂s(λ)α denotes the gradient data gen-

erated from the enhanced-sampling calculation. As be-
fore, fitting is obtained by minimizing EG with respect to
w. Derivatives of the cost function with respect to the fit-
ting parameters are computed using the back-propagation
method [21, 22], which is described in more detail in the
Supporting Information (SI).

As a test case, we train ANNs to represent the FESs
of the alanine di- and tripeptides in gas phase, systems
for which we have high-quality benchmark FESs [19]. In
these examples, interatomic interactions are desribed by
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FIG. 2: The L2 global error versus the number of training
points in the training set for the alanine dipeptide (left) and
the alanine tripeptide (right).
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the CHARMM22[23, 24] forcefield. The results are com-
pared to benchmarks as calculated by Chen et al. [19].
As CVs, we use the backbone dihedral angles (φ, ψ),
which gives two- and four-dimensional FESs for the di-
and tripeptides, respectively. For each system, free en-
ergy data are generated using the driven adiabatic free
energy dynamics method (d-AFED) [5]. The CV tem-
perature is set to 1500 K, the CV mass is 168.0 amu
Å2/rad2, and the harmonic coupling constant is 2.78×103

kcal/mol/rad2. For the alanine dipeptide, data was gen-
erated on a two-dimensional grid of 300×300 points for
the two CVs. Of these, M = 40, 000 randomly chosen
grid points were used to train the network, and the re-
maining 50,000 were used for validation. For the case of
the alanine tripeptide, 2 × 105 random CV values were
generated, and their free energy values obtained using the
gaussian fit of Chen et al.[19]. Of these, M = 105 were
used for training and the remaining 105 were used for val-
idation. In both cases, the architecture of the ANN con-
tained two hidden layers with 20 nodes in each layer for
the alanine dipeptide and 40 nodes in each layer for the
alanine tripeptide (We discuss these architecture choices
in the SI). The activation functions were chosen to be
h(x) = 1/(1 + x2), H(x) = x. In Fig. 2, we show the

L2 error =
√

(1/Nv)
∑Nv

λ=1[AANN(s(λ))−Abench(s(λ))]2,

of the FESs represented by the ANNs with respect to the
benchmark from Ref. [19] as a function of the number of
free energy points used to train the networks for both the
alanine dipeptide (left panel) and the alanine tripeptide
(right panel). In this expression, Nv is the number of
validation points. The figure shows clear convergence of
the ANN representation with 103 training points for ala-
nine dipeptide and 104 points for the alanine tripeptide,
leading to an overall accuracy of 0.03 kcal/mol for the
dipeptide and 0.2 kcal/mol for the tripeptide.

For both systems, we also trained gradient-based
ANNs using gradient data generated from the same d-
AFED calculations [5, 19]. In the case of the alanine
dipeptide, we used 1600 gradients on a 40× 40 grid, and
for the alanine tripeptide, we used 105 random gradient
vectors. In both cases, we obtain L2 errors similar to
those obtained with the ANNs trained from the free en-
ergy. Fig. 3 shows the two-dimensional FES produced
by the gradient-trained ANN (left panel) and a compar-
ison between the FES of the alanind tripeptide obtained
by the gradient-trained ANN and the free-energy-trained
ANN (right panel). Both results show the ability of the
gradient-based approach to obtain an accurate FES.

Once trained, the ANNs for the alanine di- and tripep-
tides were employed to compute the ensemble average of
a physical observable following the procedure of Ref. [20].
Given an observable O(r), the FES AANN(s; wopt) eval-
uated at the optimal parameter values wopt can be used
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FIG. 3: FES of the alanine dipeptide in gas phase generated
by a trained ANN based on the free energy gradient using
trainint data of Chen [19] (left). Comparison of free energies
generated using the gradient-based ANN for the gas-phase
alanine tripeptide and free energies obtained directly from
the free-energy-based ANN used to generate Fig. 2. The black
line represent the identity function f(x) = x.

to compute the ensemble average 〈O〉 via

〈O〉 =

∫
dns 〈O〉r(s)e−βAANN(s;wopt)∫

dns e−βAANN(s;wopt)
(5)

where 〈O〉r(s) is defined by

〈O〉r(s) =
N−1

P (s)

∫
dNr O(r) e−βU(r)

n∏
α=1

δ (qα(r)− sα)

(6)
If O(r) can be expressed entirely in terms of the CVs,
then Eq. (6) becomes unnecessary. For the alanine di-
and tripeptides, we computed the ensemble average of
the RMSD of the dihedral angles defined by

O(φ, ψ) ≡RMSD(φ, ψ) =√√√√ 1

2n

n∑
i=1

[(φi − φmin)2 + (ψi − ψmin)2] ,
(7)

where n = 1, 2 for the alanine di- and tripeptide, re-
spectively, and the set of dihedral angles

(
φmin, ψmin

)
represents the global minima of the FES. The motiva-
tion for choosing this “observable” is that it is a function
of all of the chosen CVs and hence, tests the reliability
of the full ANN-based FES. The integrals in Eq. (5) were
computed using a Metropolis Monte Carlo algorithm at
temperature T = 300 K using 5 × 107 steps. The use of
Monte Carlo requires that the ANN be able to predict
free energy values for any proposed trial move, which
here, is made by sampling a uniform distribution in the
angle space. In Fig. 4, we show the convergence of the
RMSD in Eq. (7) as a function of the number of points
in the training set. For the dipeptide, we observe conver-
gence with just a few hundred training points, obtaining
an RMSD average of 56.0◦±0.2◦. For the tripeptide, con-
vergence is obtained after a few thousand training points
around a value of 59.5◦ ± 0.5◦. Comparing the value ob-
tained using an ANN against the ensemble average of
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FIG. 4: The ensemble average of the RMSD observable de-
fined in Eq. (7) for the alanine dipeptide (left) and alanine
tripeptide (right) as function of the number of data in the
training set.

the RMSD based on the FES obtained with a gaussian
fit, (56.3◦ ± 0.1◦ and 58.3◦ ± 0.3◦ for the alanine di- and
tripeptide, respectively) we find that ANNs can faithfully
reproduce the RMSD values.

As an example of an HDFES for a peptide, we con-
sider the pentapeptide met-enkephalin, which has the se-
quence Tyr-Gly-Gly-Phe-Met. This small peptide is well
known as an endogenous ligand of opioid receptors and
is distributed throughout the central nervous system. In
Ref. [18], the complete set of free energy minima and sad-
dle points as a function of the ten backbone dihedral an-
gles, and converged free energy differences between these
points were computed using the d-AFED algorithm [5]
where the CV temperature is set to 400 K, the CV mass
is 2.8 amu Å2/rad2, and the harmonic coupling constant
is 2.78×103 kcal/mol/rad2. In particular, 1,081 minima
and 1,431 saddles were uncovered in these calculations
for a total of 2,512 “landmark” points on the FES. The
data from a set of 7.5 × 105 random CVs from 500 ns
d-AFED simulations were used to train a neural network
based on their free energy values. The architecture of
the ANN contained three hidden layers with 100 nodes
in the first two layers and 50 in a third, the addition of
which gives significantly higher accuracy. The trained
ANN was subsequently used to compute the ensemble
average of the NMR spin-spin J-coupling constants for
each φ, ψ Ramachandran dihedral angle pair in the five-
residue sequence using the Karplus equation [25] J(φ) =
A cos2(φ−φ0)+B cos(φ−φ1)+C, where φ0 = φ1 = 60◦,
A = 7.09 Hz, B = −1.42 Hz and C = 1.55 Hz, which
correspond to the parameters reported in Ref. [26] for
the NMR spin-spin J-coupling between hydrogen atoms
HN and Hα in each peptide backbone. The average in
Eq. (5) is computed for each residue using Metropolis
Monte Carlo simulations of 5 × 107 steps at a tempera-
ture of 300 K with the trial values sampled from a uni-
form distribution in the ten-dimensional dihedral-angle
space. In order to benchmark the J-couplings from the
ANN, we additionally performed a long NVT simula-
tion, collecting 17 µs and averaging J(φ) every 100 fs.
The results are shown in Fig. 5. The figure shows that
this observable is well converged for each residue after
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FIG. 5: NMR spin-spin J-couplings between HN and Hα for
each of the five residues in met-enkaphlin using the trained
ANN together with Monte Carlo simulations in order to eval-
uate Eq. (5). Dots on the right are converged NVT results.

roughly 3 × 104 training points. The NVT results and
the converged integrals computed with a trained ANN
are matching within an error of 5%, confirming the good
accuracy of our calculation. Considering the high dimen-
sionality of the FES and the large number of landmark
points on it, the roughly 30,000 training points needed to
converge the J-couplings constitutes a remarkably sparse
distribution of points on this HDFES required to reach
convergence. In general, the ten-dimensional HDFES as-
sociated with met-enkephalin is far too large to repre-
sent explicitly, which renders the direct computation of
observables such as the J-couplings from fully atomistic
molecular dynamics calculations significantly more labo-
rious. Clearly, then, ANNs, once trained, provide a suf-
ficiently compact representation that the calculation can
be performed straightforwardly and efficiently.

As an additional application, we employ an ANN to
learn the free energy landscape of a crystal system. The
possibility of a crystallographic fcc-bcc phase transition
in solid xenon at high pressure (25 GPa - 30 GPa) near
the melting point (2700 K - 2900 K) has been debated
in the literature [27–31]. In order to sample the HD-
FES, we performed periodic d-AFED calculations on a
system of 4000 xenon atoms interacting via a Bucking-
ham potential [32] at 2700 K and 25 GPa pressure. The
CVs consisted of the Steinhardt order parameters Q4 and
Q6 [33], and the cell lengths |a|, |b| and |c|, yielding a
five-dimensional FES. The data from a set of 5 × 105

random CV configurations chosen from the 200 ns d-
AFED run were used to train a neural network based
on free energy values. The architecture of the ANN con-
sisted of two hidden layers with 80 nodes in each layer.
The left panel of Fig. 6 shows the two-dimensional pro-
jection onto the Q4-Q6 plane of the FES generated by
the trained ANN. The two deepest minima represent bcc
and fcc stable structures while the local minima between
them represent a hcp metastable state.
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FIG. 6: Left: Projection onto the Q4-Q6 plane of the FES (in
eV) generated by a trained ANN. Thermodynamically inac-
cessible regions are shown as white. Right: Dependence of the
isothermal compressibility on the number of training points.

The irregular integration domain suggested by the
projection in Fig. 6 represents the thermodynamically
accessible region accessed in the d-AFED simulation.
This unusual domain renders the application of Eq. (5)
less straightforward. Consequently, we employed a sec-
ond ANN to classify all points on the five-dimensional
landscape in terms of their thermodynamic accessibility,
thereby defining an integration domain (see SI for de-
tails). We collected a training set of 4 × 105 points us-
ing a free energy threshold of 20 eV to label each point.
The trained ANNs were subsequently used to compute
the ensemble average of the isothermal compressibility
χ of the system defined as χ = −(1/〈V 〉)(∂〈V 〉/∂P ) =
β〈(V −〈V 〉)2/〈V 〉, where 〈V 〉 is the average volume of the
system. The required ensemble averages were computed
using Monte Carlo simulations of 108 random points.
The right panel of Fig. 6 shows the convergence of the
compressibility as a function of the number of point in the
training set. We observe a converged result after roughly
2 × 104 points with a final value of χ = 0.020 ± 0.005
GPa−1. The computed value is slightly higher than the
measured compressibility χ ∼ 0.008 GPa−1 at room tem-
perature and 25 GPa of [34].

We have shown that machine learning techniques such
as ANNs can provide a smooth and compact way to rep-
resent HDFESs in complex systems, not only allowing
the free energy differences to be obtained easily but also
permitting ensemble averages to be computed directly
from the machine learning model. In future work, we will
explore other machine learning models [15–17] and in-
vestigate the application of machine learning techniques
to prediction of structure and polymorphism in molecu-
lar crystals [35, 36] and to the study of conformational
transitions in macromolecules, where high dimensionality
limits the capabilities of enhanced sampling approaches.
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