
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Unconstrained Capacities of Quantum Key Distribution and
Entanglement Distillation for Pure-Loss Bosonic Broadcast

Channels
Masahiro Takeoka, Kaushik P. Seshadreesan, and Mark M. Wilde

Phys. Rev. Lett. 119, 150501 — Published 13 October 2017
DOI: 10.1103/PhysRevLett.119.150501

http://dx.doi.org/10.1103/PhysRevLett.119.150501


Unconstrained Capacities of Quantum Key Distribution and Entanglement Distillation for
Pure-Loss Bosonic Broadcast Channels

Masahiro Takeoka,1 Kaushik P. Seshadreesan,2 and Mark M. Wilde3

1National Institute of Information and Communications Technology, Koganei, Tokyo 184-8795, Japan
2Max Planck Institute for the Science of Light, Staudtstr. 2, 91058 Erlangen, Germany

3Hearne Institute for Theoretical Physics, Department of Physics and Astronomy,
and Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803, USA

We consider quantum key distribution (QKD) and entanglement distribution using a single-sender multiple-
receiver pure-loss bosonic broadcast channel. We determine the unconstrained capacity region for the distilla-
tion of bipartite entanglement and secret key between the sender and each receiver, whenever they are allowed
arbitrary public classical communication. A practical implication of our result is that the capacity region demon-
strated drastically improves upon rates achievable using a naive time-sharing strategy, which has been employed
in previously demonstrated network QKD systems. We show a simple example of the broadcast QKD protocol
overcoming the limit of the point-to-point strategy. Our result is thus an important step toward opening a new
framework of network channel-based quantum communication technology.

Introduction. Quantum key distribution (QKD) [1, 2] and
entanglement distillation (ED) [3, 4] are two cornerstones of
quantum communication. QKD enables two or more coop-
erating parties to distill and share unconditionally secure, ran-
dom bit sequences, which could then be used for secure classi-
cal communication. ED, on the other hand, allows them to dis-
till pure maximal entanglement from a quantum state shared
via a noisy communication channel, which could then be used
to faithfully transfer quantum states by means of quantum
teleportation [5]. In both protocols, the parties are allowed
to perform (in principle) an unlimited amount of local opera-
tions and classical communication (LOCC).

Not only have there been theoretical developments, but also
quantum communication technologies have matured tremen-
dously in recent years. In particular, QKD has been available
commercially for a number of years and has now expanded
to real-world networks [6–8], which consist of point-to-point
QKD links and trusted nodes.

Another important direction is to go beyond point-to-point
links and make use of network channels. In fact the operation
of QKD has been proposed for a broadcast channel (single-
sender and multiple-receiver) [9] and recently experimentally
demonstrated for a multiple access channel [10] (multiple-
sender and single-receiver). In [10], the developed system
is based on conventional optical-access network protocols,
in which the link between each sender and receiver is es-
sentially point-to-point quantum communication and multiple
users share the channel, each having a given amount of time
to use it. This time-sharing protocol has a strong limit on the
rate of key that can be generated among the parties: when one
sender and one receiver use the channel most of the time, the
key or entanglement rates for the other users decrease. Then
a natural question arises. Is this a fundamental trade-off limit
or can we do better than the time-sharing limit?

In this paper, we answer this question affirmatively by es-
tablishing the unconstrained capacity region of a pure-loss
bosonic broadcast channel, when used for the distillation of
bipartite entanglement and secret key between the sender and
each receiver, along with the assistance of unlimited LOCC

[11]. Even though communication tasks in various network
scenarios have been examined [12–17], there has been lim-
ited work on the capacity of entanglement and secret key dis-
tillation assisted by unlimited LOCC. Only recently in [18]
were outer bounds on the achievable rates established for
multipartite secret-key agreement and entanglement genera-
tion between any subset of the users of a general single-
senderm-receiver quantum broadcast channel (QBC) (for any
m ≥ 1), assisted by unlimited LOCC. The main idea was to
employ multipartite generalizations of the squashed entangle-
ment [19, 20] and the methods of [21, 22].

We break the proof of the capacity region into two parts.
The upper bound (converse) is established by combining the
method in [18] and the point-to-point upper bound based on
relative entropy of entanglement [23, 24], first discussed in
[23] and rigorously proven in [24]. The lower bound (achiev-
ability) is proved by employing the quantum state merging
protocol [25, 26]. Our result clearly shows that the rate region
considerably improves upon the time-sharing limit, and at the
same time, it proves that this is the fundamental limit that can-
not be overcome within the same framework. Moreover, we
do not leave this result as a purely theoretical development,
but we also consider the possible implementation of a QKD
protocol overcoming the limit by simple point-to-point pro-
tocols for an optical broadcast channel. Our result is thus an
important step toward the opening of a new framework of net-
work channel-based quantum communication technology.

LOCC-assisted distillation in a linear-optical network. We
consider the following general distillation protocol which uses
a quantum broadcast channel [18]. The sender A prepares
some quantum systems in an initial quantum state and succes-
sively sends some of these systems to the receivers B1, B2,
. . . , Bm by interleaving n channel uses of the 1-to-m broad-
cast channel with rounds of LOCC. The goal of the proto-
col is to distill bipartite maximally entangled states ΦABi

and
private states γABi (equivalently, a secret key [27, 28]). Af-
ter each channel use, they can perform an arbitrary number
of rounds of LOCC (in any direction with any number of par-
ties). The quantityEABi

denotes the rate of entanglement that
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can be established betweenA andBi (i.e., the logarithm of the
Schmidt rank of ΦABi normalized by the number of channel
uses) and KABi denotes the rate of secret key that can be es-
tablished between A and Bi (i.e., the number of secret-key
bits in γABi

normalized by the number of channel uses). The
parameter ε ∈ (0, 1) is such that the fidelity [29] between the
ideal state at the end of the protocol and the actual state is not
smaller than 1− ε. The protocol considered here is similar to
the one described in [18], except that here the goal is not to
establish bipartite entanglement or key among the receivers or
multipartite entanglement or key among more than two par-
ties. A rate tuple (EAB1

, . . . , EABm
, KAB1

, . . . ,KABm
) is

achievable if for all ε ∈ (0, 1) and sufficiently large n, there
exists an (n, EAB1 , . . . , EABm , KAB1 , . . . ,KABm , ε) proto-
col of the above form. The capacity region is the closure of
the set of all achievable rates.

The quantum channel we consider here is a general 1-to-
m bosonic broadcast channel LA′→B1···Bm

consisting of pas-
sive linear optical elements (beam splitters and phase shifters)
[30]. An isometric extension of the channel (see, e.g., [31]),
denoted by UL, is then given by an l-input l-output linear
optical unitary transformation (see Fig. 1(a)). For UL, one
of the inputs is the sender A’s input and the others are pre-
pared as vacuum states. Also, m of the outputs (m ≤ l) are
given to the legitimate receivers {B1, . . . , Bm} (one per re-
ceiver), and the rest of the outputs are for the environment,
which we allow the eavesdropper to access during the pro-
tocol. Let {ηB1 , . . . , ηBm} be a set of power transmittances
from the sender to the respective receivers. Each ηBi

is non-
negative and

∑m
i=1 ηBi

≤ 1. Let B = {B1, . . . , Bm}, let
T ⊆ B, and let T denote the complement of the set T . Then
our main result is as follows:

Theorem 1: The LOCC-assisted unconstrained capacity re-
gion of the pure-loss bosonic QBC LA′→B1···Bm

is given by∑
Bi∈T

EABi
+KABi

≤ log2([1− ηT ]/[1− ηB]) , (1)

for all non-empty T ⊆ B, where ηB =
∑m
i=1 ηBi

and ηT =∑
Bi∈T ηBi

.
The proof of Theorem 1 consists of three steps:
(1) Decomposition of UL. First we argue that UL can

be rewritten as an equivalent and simpler QBC (see [30] as
well for the reduction outlined here). The isometric exten-
sion UL can be represented by an l × l unitary matrix de-
scribing the input-output relation of a set of annihilation op-
erators {â1, . . . âl} for l input modes. In [32], it was shown
that any such l × l unitary matrix can be decomposed as a
sequence of 2 × 2 matrices, each realized by a beam split-
ter and phase shifters combining any two of the l modes (see
Fig. 1(b), which contains at most lC2 beam splitters). Re-
call that all the inputs except for the sender’s are prepared as
vacuum states. Then we can remove all the beam splitters that
have both inputs set to vacuum states because their outputs are
vacuum states as well. In addition, by grouping together all of
the eavesdropper’s modes, the channel is simplified to just a

sender

receivers

environment

(a)

(c)(b)

FIG. 1. (a) Single-sender m-receiver pure-loss linear optics quan-
tum broadcast channel. UL is a unitary operator of an arbitrary linear
optics circuit. (b), (c) Reductions to an equivalent channel.

sequence of m beam splitters (Fig. 1(c)). In what follows, we
consider this simplified, equivalent channel model.

(2) Achievability part. To achieve the rate region in (1),
we consider a distillation protocol which employs quantum
state merging. State merging was introduced in [25, 26] and
provides an operational meaning for the conditional quantum
entropy. For a state ρAB , its conditional quantum entropy is
defined as H(A|B)ρ = H(AB)ρ − H(B)ρ where H(AB)ρ
andH(B)ρ are the quantum entropies of ρAB and its marginal
ρB , respectively. For many copies of ρAB shared between Al-
ice and Bob, H(A|B)ρ is the optimal rate at which two-qubit
maximally entangled states need to be consumed to transfer
Alice’s systems to Bob’s side via LOCC. If H(A|B)ρ is neg-
ative, the result is that after transferring Alice’s systems, they
can gain (i.e., distill) entanglement at rate −H(A|B)ρ. State
merging also yields a quantum analog of the Slepian-Wolf
theorem concerning classical distributed compression and has
been applied to the QBC in [16, 17].

Here we consider the following alternative state-merging-
based protocol. Alice first prepares n copies of a two-mode
squeezed vacuum (TMSV) state, defined as |Ψ(NS)〉AA′ =∑∞
m=0

√
λm(NS)|m〉A|m〉A′ , where |m〉 is an m-photon

state, λm(NS) = Nm
S / (NS + 1)

m+1
, and NS is the average

photon number of one mode of the state. She sends system
A′ to B1 · · ·Bm through the broadcast channel in Fig. 1(a).
After n uses of the channel, they share n copies of the state
φAB1···Bm

= LA′→B1···Bm
(|Ψ(NS)〉〈Ψ(NS)|AA′).

Then by using φ⊗nAB1···Bm
, they perform state merging to

establish entanglement. More precisely, all the receivers suc-
cessively transfer their systems back to Alice by LOCC and at
the same time generate entanglement with her in the process
This can be accomplished by applying the point-to-point state
merging protocol successively [25, 26].
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Then we obtain the achievable rate region as

∑
Bi∈T

EABi ≤ −H(T |AT )φ, (2)

where φAB1···Bm = LA′→B1···Bm(|Ψ(NS)〉〈Ψ(NS)|AA′).
The right-hand side of the inequalities in (2) can be explicitly
calculated. Recall that the marginal of the TMSV ΨA′(NS) =
TrA[|Ψ(NS)〉〈Ψ(NS)|AA′ ] is a thermal state with mean pho-
ton number NS . Its entropy is equal to H(A′)Ψ = g(NS),
where g(x) = (x+1) log2(x+1)−x log2 x. Also a pure-loss
channel with transmittance η maps a thermal state to another
thermal state with reduced average photon number. Then the
right-hand side of (2) is calculated as

−H(T |AT )φ = H(AT )φ −H(AT T )φ

= H(T E)φ −H(E)φ

= g((1− ηT )NS)− g((1− ηB)NS).

By taking NS → ∞ in the last line above, the limit is equal
to log2([1 − ηT ]/[1 − ηB]). Since one ebit of entanglement
can generate one private bit of key, we can replace EABi with
EABi +KABi , which completes the achievability part.

(3) Converse part. The converse relies upon several tools
and is given in terms of the one-shot variant [33] of the rel-
ative entropy of entanglement (REE) [34]. The ε-REE for a
quantum state ρAB is defined by

EεR(A;B)ρ = inf
σAB∈SEP

Dε
H(ρAB‖σAB), (3)

whereDε
H(ρ‖σ) = − log2 inf0≤Λ≤I,Tr[Λρ]≥1−ε Tr[Λσ] is the

hypothesis testing quantum relative entropy [35–37] and SEP
denotes the set of separable states. The original LOCC-
assisted communication protocol can equivalently be rewrit-
ten by using a teleportation simulation argument [4, Sec-
tion V] (see also [38]) suitably extended to continuous-
variable bosonic channels [39]. Teleportation simulation in
the case of a point-to-point channel can be understood as
a way of reducing a sequence of adaptive protocols involv-
ing two-way LOCC to a sequence of non-adaptive protocols
followed by a final LOCC [4, 38]. For all ‘teleportation-
simulable channels’ that allow for such a reduction, an upper
bound on the entanglement and secret key agreement capac-
ity can be given by the ε-REE [24], because the ε-REE is an
upper bound on the one-shot distillable key of a bipartite state
[24]. Furthermore, for pure-loss bosonic channels, one can
use a concise formula for the REE identified in [23]. With
these techniques, an upper bound on the unconstrained capac-
ity of a point-to-point pure-loss channel is given by the REE
of the state resulting from sending an infinite-energy TMSV
through the channel, explicitly calculated to be − log2(1− η)
[23, 24].

Following [24], suppose that the original protocol generates

a state ωAB1···Bm which is ε-close to Φ̃AB1···Bm :

1− ε ≤ F (ωAB1···Bm , Φ̃AB1···Bm) (4)

Φ̃AB1···Bm
= Φ

⊗nEAB1

A1B1
1
⊗ · · · ⊗ Φ

⊗nEABm

AmB1
m

⊗ γ⊗nKAB1

Am+1B2
1
⊗ · · · ⊗ γ⊗nKABm

A2mB2
m

, (5)

where Aj and Bji are subsystems of A and Bi, respec-
tively. Since the pure-loss bosonic QBC is covariant with
respect to displacement operations (which are the teleporta-
tion corrections for bosonic channels [40]), it is teleportation-
simulable [39]. Then the original broadcasting protocol de-
scribed above can be replaced by the distillation of n copies
of φAB1···Bm

= NA′→B1···Bm
(|Ψ(NS)〉〈Ψ(NS)|AA′) via a

single LOCC. This simulation incurs an additional error that
depends on the energyNS of the state |Ψ(NS)〉AA′ and which
vanishes in the limit NS → ∞. Let us denote the total error
by ε(NS) and note that limNS→∞ ε(NS) = ε. Then by using
the arguments of [24], we find that∑

Bi∈T
(EABi

+KABi
) ≤ 1

n
E
ε(NS)
R (T n;AnT n)φ⊗n (6)

for all T , where Eε(NS)
R denotes the ε-relative entropy of en-

tanglement recalled above.
To find an upper bound on 1

nE
ε(NS)
R (T n;AnT n)φ⊗n for

each T , we use a calculation from [23, 24] for a point-to-
point pure-loss bosonic channel with transmittance η. In [24],
it was shown that the ε-relative entropy of entanglement for a
pure-loss channel is bounded from above by − log2(1− η) +
C(ε)/n, where C(ε) = log2 6 + 2 log2([1 + ε]/[1− ε]). Also
it is critical to observe that the order of the beam splitters in
Fig. 1(c) is reconfigurable by properly commuting the beam
splitting operators. By using this observation and some prop-
erties of the TMSV, we obtain the following upper bound on
(6):

log2([1− ηT ]/[1− ηB]) + C(ε)/n. (7)

The converse proof is completed by taking the limit n → ∞.
Note that our converse is a strong converse because there is no
need to take the limit ε→ 0 in order to get the upper bound of
log2

(
1−ηT
1−ηB

)
. See Supp. Mat. 1 [41] for detailed calculations.

Since the converse bound coincides with the achievable rate
region, this completes the proof of Theorem 1.

Discussion. The simplest pure-loss broadcast channel is a
1-to-2 broadcast channel with one sender, Alice, and two re-
ceivers, Bob and Charlie. The capacity region implied by The-
orem 1 is explicitly given by

EAB +KAB ≤ log2([1− ηC ]/[1− ηB − ηC ]) , (8)
EAC +KAC ≤ log2([1− ηB ]/[1− ηB − ηC ]) , (9)

EAB +KAB + EAC +KAC ≤ − log2(1− ηB − ηC) , (10)

where ηB and ηC are the transmittances from Alice to Bob
and Charlie, respectively.
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(a) (b)

FIG. 2. Comparison of the LOCC-assisted capacity (solid line)
and the time sharing of the point-to-point capacity (dashed line). (a)
Capacity region for the 1-to-2 QBC with (ηB , ηC) = (0.3, 0.3). (b)
Rate sum comparison for the 1-to-m QBC with η = 0.1.

It is interesting to compare the capacity with a point-to-
point protocol based approach. To do so, we discuss ED and
QKD scenarios separately. A naive ED protocol in QBC is the
time sharing of the optimal point-to-point protocol (i.e., they
split n uses of the quantum channel into two parts: distillEAB
with rate − log2(1 − ηB) in the first part and EAC with rate
− log2(1− ηC) in the second part). Figure 2(a) compares the
capacity region and the time-sharing strategy. The capacity
(optimal strategy) clearly outperforms time sharing and the
gap is observed even on the axes. This rate gain originates
from the fact that in the optimal strategy, the third party helps
the distillation between the other two through a sequence of
successive state merging [26] (for example, Charlie helps to
increase EAB and vice versa).

The rate gap is more pronounced when we extend this to the
m-receiver scenario. Consider the 1-to-m symmetric pure-
loss channel where each receiver has equal transmittance η/m
and the distillation scenario such that all receivers achieve the
same rate. Then the sum of the rates for the optimal protocol
based on state merging is − log2(1− η) whereas that for time
sharing of the point-to-point optimal protocol is − log2(1 −
η/m) (see Supp. Mat. 2 [41]). The plots in Fig. 2(b) show a
huge gap between time sharing and the optimal key distillation
strategy.

Let us turn to the QKD scenario. The experimental demon-
stration in [10] utilizes the time (or frequency) sharing due to
technical reasons [42]. In principle, however, one can over-
come this by still a point-to-point based protocol. In QKD,
the purpose of quantum communication is to hold correlated
classical data and then the key distilled classically. Thus, the
sender Alice can copy her data and make point-to-point key
distillation simultaneously with each receiver (a related idea
is in [9]) which can overcome the tradeoff by time sharing.
The question is then: can we even outperform this no tradeoff
rate region? Here we show that it is possible by describing an
explicit example based on a point-to-point continuous variable
QKD protocol proposed in [43] (GC09), which uses squeezed
state and reverse reconciliation (see Supp. Mat. 3 [41]).

In the 1-to-2 QBC setting, the simultaneous operation of
the point-to-point GC09 protocol generates a pair of key

FIG. 3. Secret key rate region of the GC09 based CVQKD in a
1-to-2 pure-loss bosonic QBC, with (ηB , ηC) = (0.3, 0.3). The
squeezing parameter is v = 40 (see Supp. Mat. 3 [41]). The BC-
CVQKD (solid line), simultaneous application of point-to-point pro-
tocol (dashed line), and time sharing of the point-to-point protocol
(dotted line).

rates (KAB ,KAC) = (I(X;Y ) − I(Y ;C ′)ρ, I(X;Z) −
I(Z;B′)ρ), where X , Y , and Z are the classical data shared
by Alice, Bob, and Charlie after n uses of the quantum chan-
nel, B′ and C ′ are the quantum systems for possible eaves-
droppers which may contain the environment (usually called
Eve) and the receiver who is not involved in the key (for ex-
ample, C ′ includes Charlie). I(X;Z) and I(Z;C ′)ρ denote
classical and quantum mutual information, respectively. As
discussed above, these two rates are simultaneously achiev-
able.

Now we show how to overcome this by using a trick in-
spired by the successive state merging. Suppose Alice and
Charlie first conduct point-to-point key distillation. This op-
eration achieves the key rate KAC = I(X;Z) − I(Z;B′)ρ
and also reconstructs Charlie’s classical system Z at Alice’s
side. After that, Bob distills the key with Alice, where Alice
holds X and Z and Bob holds Y . Thus, they can achieve the
key rate KAB = I(XZ;Y )− I(Y ;C ′)ρ, which can be larger
than that in the simple point-to-point protocol. Similarly, by
changing the order of distillation, they can achieve the rate
pair (KAB ,KAC) = (I(X;Y ) − I(Y ;C ′)ρ, I(XY ;Z) −
I(Z;B′)ρ). Thus the achievable rate region is given by time
sharing of these two rate pairs. We refer to this protocol
as the broadcast-CVQKD (BC-CVQKD). Figure 3 shows the
key rate region for BC-CVQKD, which outperforms the rate
regions for the simultaneous point-to-point protocol and the
simple time sharing (Supp. Mat. 3 [41] gives an explicit key
rate expression). Since the original GC09 is a noise-immune
CVQKD protocol [43] (see also [44]), it is an interesting fu-
ture work to extend our analysis to a noisy bosonic QBC. Also
there still remains a huge gap between the key rate region in
Fig. 3 and the capacity region in Fig. 2, suggesting that there
may exist yet-to-be discovered clever broadcast QKD proto-
cols.

Conclusion. We have established the unconstrained capac-
ity region of a pure-loss bosonic broadcast channel for LOCC-
assisted entanglement and secret key distillation. The chan-
nel we considered here is general in the sense that it includes
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any (no-repeater) linear optics network as its isometric exten-
sion. It could provide a useful benchmark for the broadcasting
of entanglement and secret key through such channels. Fur-
thermore, our result stimulates practical protocols for QKD or
entanglement distillation over broadcast channels which over-
come the time-sharing bound. As an example, we show the
BC-CVQKD approach that can outperform a simple applica-
tion of the point-to-point strategy.
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11, 075001 (2009).

[7] M. Sasaki et al., Optics Express 19, 10387 (2011), arXiv:quant-
ph/1103.3566.

[8] S. Wang et al., Optics Express 22, 21739 (2014).
[9] P. D. Townsend, Nature 385, 47 (1997).
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