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The recent synthesis of two-dimensional staggered materials opens up burgeoning opportunities to study
optical spin-orbit interactions in semiconducting Dirac-like systems. We unveil topological phase transitions in
the photonic spin Hall effect in the graphene family materials. It is shown that an external static electric field
and a high frequency circularly polarized laser allow for active on-demand manipulation of electromagnetic
beam shifts. The spin Hall effect of light presents a rich dependence with radiation degrees of freedom, material
properties, and features non-trivial topological properties. We discover that photonic Hall shifts are sensitive to
spin and valley properties of the charge carries, providing a unprecedented pathway to investigate spintronics
and valleytronics in staggered 2D semiconductors.

At macroscopic scales electromagnetic radiation’s spatial
and polarization degrees of freedom are independent quanti-
ties that can be described by traditional geometric optics. A
different landscape takes place in the subwavelength regime
where emergent photonic spin-orbit interactions (SOI) cul-
minate in spin-dependent changes in light’s spatial properties
[1, 2]. A striking optical phenomena originating from SOI is
the spin Hall effect of light (SHEL), which corresponds to the
shift of photons with contrary chirality to opposite sides of a
finite beam undergoing reflection/refraction [3–6]. The SHEL
is universal to any interface and it exhibits a unique potential
for applications in precision metrology, including bio-sensing
[7], nanoprobing [8], and thin films and multilayer graphene
characterization [9–11]. It has also been used to identify dif-
ferent absorption mechanisms in semiconductors [12, 13].

Staggered two-dimensional semiconductors [14–16], in-
cluding silicene [17], germanene [18], and stanene [19, 20] are
monolayer materials made of Silicon, Germanium, and Tin
atoms, respectively, arranged in a honeycomb lattice. Unlike
graphene [21], these materials are nonplanar and possess in-
trinsic spin-orbit coupling that results in the opening of a gap
in their electronic band structure. Under the influence of static
and circularly polarized electromagnetic fields the four Dirac
gaps are in general nondegenerate and the monolayer may be
driven through several phase transitions involving topologi-
cally non-trivial states [22–26]. Previous studies on SHEL
in the graphene family have been restricted to graphene [27–
29], therefore overlooking the role of finite staggering, spin-
orbit coupling, and spin/valley dynamics. The interplay be-
tween topological matter and SHEL was considered in bulk
materials with axion coupling [30]. In this letter we take
advantage of the crossroads between topology, phase transi-
tions, spin-orbit interactions, and Dirac physics in staggered
2D semiconductors to uncover topological phase transitions
in the photonic spin Hall effect. We show that the SHEL de-
pends on the topological invariant describing each phase and
it allows to probe the spin and valley properties of charge
carriers throughout different phase transitions. The marriage
of spinoptics, spintronics, and valleytronics in 2D semicon-
ductors opens a promising route to investigate emergent elec-
tronic and photonic phenomena in the graphene family.

Let us consider that a Gaussian beam [31] of frequency ω

impinges at an angle θ on a staggered monolayer placed on
top of a substrate of dielectric constant ε. The incident beam
Ei = A(yi, zi)[fpx̂i + fsŷi − ifskyi(Φ + ikzi)

−1ẑi] is con-
fined in the y-direction only. Here, A(y, z) = [2/πw2

0(1 +

k2z2/Φ2)]1/4eikz−k
2y2/2(Φ+ikz) is the Gaussian amplitude,

w0 is the beam waist, k = ω/c is the wavenumber, and
Φ = k2w2

0/2 is the Rayleigh range. The polarization of the
beam is given by the complex unit vector f̂ = fpx̂i + fsŷi,
where fp = 1, fs = 0 (fp = 0, fs = 1) corresponds to a lin-
early polarized transverse magnetic (electric) state. Relevant
unit vectors are defined in Fig. 1. In addition to the Gaussian
beam, the system is subject to a static electric fieldEz and to a
circularly polarized plane wave of intensity I0 and frequency
ω0 � ω propagating along z-direction. Whilst Ez generates
an electrostatic potential 2`Ez between the two inequivalent
sub-lattices of the monolayer (see inset in Fig. 1) [22, 23], the
high frequency laser modifies the electronic band structure of
the material and chiral states may arise even in the absence
of magnetic fields [24, 25]. As a consequence, the material
presents a non-zero Hall conductivity that induces polariza-
tion conversion of the incident radiation.

Analytical results for the reflected electromagnetic field Er
can be derived within the paraxial approximation. Expanding
the incident beam in a plane wave basis and enforcing stan-
dard boundary conditions for each component, one obtains

Er ' Er
[
(1+iρR)A(yr−δ̃1, zr)− ρIA(yr−δ̃2, zr)

]
ê−

+
[
(1−iρR)A(yr−δ̃2, zr) + ρIA(yr−δ̃1, zr)

]
ê+,(1)

where Er is a constant, ρ = ρR + iρI = (fsrss +
fprsp)/(fprpp + fsrps), and r

ij
are the Fresnel’s reflection

coefficients for incoming j- and outgoing i-polarized plane
waves. Expressions for rij in terms of the monolayer’s con-
ductivity can be derived by modeling the 2D material as a
surface density current at z = 0 [32]. Besides, ê± =
[x̂r ± i(ŷr − βyrẑr)]/

√
2 are left (+) and right (−) circu-

larly polarized unit vectors with β = ik/(Φ + ikzr), and
x̂r = x̂i−2x̂L(x̂i · x̂L), ŷr = ŷi, and ẑr = ẑi−2ẑL(ẑi · ẑL).
Note that the reflected beam corresponds to the superposi-
tion of left and right circularly polarized states given by the
sum of two Gaussians centered at δ̃1 and δ̃2 and weighted by
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Figure 1. Schematic representation of the system under study. The
inset exhibits the top and side views of staggered graphene fam-
ily materials. Lattice constant and staggering length values are
a = (3.86, 4.02, 4.7) Å and ` = (0.23, 0.33, 0.4) Å for silicene,
germanene, and stanene, respectively [25].

the real and imaginary parts of ρ. For low-dissipative ma-
terials (ρI � ρR), each component of the field reduces to
single Gaussians with photons of opposite helicity shifted by
δ̃1 (right) and δ̃2 (left). The complex displacements δ̃l can
be conveniently written as δ̃l = ∆̃IF + (−1)l∆̃r (l = 1, 2),
where ∆̃IF = Yp(|ρ|2 + 1)

−1

(fp + fsrps/rpp)
−1

+ {p ↔ s},
Yp = ifs(rpp + r

ss
) cot θ/kr

pp
, Ys = −Yp|p↔s, and ∆̃r is ob-

tained from ∆̃IF by replacing Yp → iρYp and Ys → −iYs/ρ∗.
We mention that ∆IF = Re[∆̃IF] and ΘIF = kIm[∆̃IF]/Φ are
the spatial and angular Imbert-Fedorov shifts [4, 33, 34], re-
spectively. The SHEL shifts of the intensity distribution cen-
troid for left and right circular polarizations can be cast as

∆±SHEL =∆IF±∆r =∆IF±Re

[
∆̃r(1 + ρ∗2) + 2ρI∆̃IF

1 + |ρ|2

]
. (2)

In order to evaluate ∆±SHEL one needs the optical conduc-
tivity tensor of the monolayer at temperature T and doping µ.
Using Kubo’s formalism [35, 36] one obtain σij(ω, µ, T ) =∑
η,s

∫∞
−∞ σ̃ηsij (ω,E)/4kBT cosh2[(E − µ)/2kBT ] dE, with

zero temperature conductivities σ̃ηsij (ω, µ) given by

σ̃ηsxx
σ0/2π

=
4µ2−∆η

s
2

2~µΩ
Θ(2µ−|∆η

s |)+

[
1− ∆η

s
2

~2Ω2

]
tan
−1

[
~Ω

M

]
+

∆η
s

2

~ΩM
,

σ̃ηsxy
σ0/2π

=
2η∆η

s

~Ω
tan
−1

[
~Ω

M

]
. (3)

Here, σ̃ηsyy = σ̃ηsxx, σ̃ηsyx = −σ̃ηsxy , σ0 = e2/4~, Ω = −iω + Γ,
where Γ is the scattering rate, and M = max(|∆η

s |, 2|µ|).
The mass gap ∆η

s = ηsλSO − e`Ez − ηΛ depends on the
strength of the intrinsic spin-orbit coupling λSO (∼2, ∼20,
and∼300 meV for silicene, germanene, and stanene [14]) and
the spin (s = ±1) and valley (η = ±1) indices. The coupling

Figure 2. (a) Electronic band structure of graphene family semicon-
ductors for spin down (s = −1) and up (s = +1). n and C are
the number of closed gaps and Chern number, respectively. Param-
eters are {e`Ez/λSO,Λ/λSO} = {0, 0} (left), {0, 1} (middle), and
{0, 2} (right). Real (solid) and imaginary (dashed) components of
(b) σxx and (c) σxy , for the phases described in (a). The layer is
neutral, kBT = 10−2λSO, and ~Γ = 0.002λSO.

constant between the monolayer and the high frequency laser
is Λ = ±8παv2

F I0/ω
3
0 , where α is the fine structure con-

stant, vF is Fermi velocity, and the +(−) sign corresponds
to left (right) circular polarization. The external fields allow
for extraordinary control of the optoelectronic response of the
monolayer (see Fig. 2). For instance, at Ez = Λ = 0 the sys-
tem behaves as a quantum spin Hall insulator (QSHI). If we
increase Λ while keeping Ez = 0, the Dirac gaps for s = +1
decrease. At Λ = λSO these gaps close and the system under-
goes a topological phase transition from the QSHI phase to the
spin polarized metal (SPM) phase. Further increasing Λ re-
sults in reopening the gaps and the system reaches the anoma-
lous quantum Hall insulator (AQHI) phase. Similar transitions
can be obtained by changingEz . As a consequence, staggered
semiconductors of the graphene family present a rich phase di-
agram [24]. Many of the phases have non-trivial topological
features which are characterized by a non-zero Chern number
C =

∑′

η,s ηsign[∆η
s ]/2, where the prime indicates that only

open gaps should be summed over. For a left circularly po-
larized laser, C = 0,−1,−2 in the QSHI, SPM, and AQHI
phases, respectively (see Fig. 3 for other phases). In Fig. 2b,c
we illustrate the behavior of σxx and σxy as a function of ω
in the aforementioned phases. Note that Re[σxy] (Re[σxx]) is
proportional to C (n) at low frequencies.

In Fig. 3 we unveil the role of topology and spin-orbit inter-
actions in the photonic spin Hall effect for a suspended stag-
gered monolayer. Panels (a) and (b) show the phase diagram
for the Imbert-Fedorov and relative SHEL displacements, re-
spectively. The dashed white lines mark semimetallic (SVPM,
SPM, and SDC) phases where at least one gap is closed. Note
that both shifts present signatures of the phase transitions tak-
ing place in the material. In the insulating QSHI, BI, AQHI,
and PS-QHI phases all Dirac gaps are open with ∆IF and ∆r

being weakly affected by the external fields. However, close
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Figure 3. Phase diagram of (a) ∆IF and (b) ∆r for suspended neu-
tral staggered monolayers. The electronic phases are quantum spin
Hall insulator (QSHI), spin-valley polarized metal (SVPM), band in-
sulator (BI), single Dirac cone (SDC), spin-polarized metal (SPM),
anomalous quantum hall insulator (AQHI), and polarized-spin quan-
tum Hall insulator (PS-QHI). (c) ∆IF (blue) and ∆r (red) as a func-
tion of Λ for µ = 0. (d) ∆r versus Λ for µ/λSO = 0.05 (blue),
0.1 (red), and 0.2 (black). The beam is s-polarized, ~ω = 0.1λSO ,
θ = π/4, d0 = ~c/λSO, and e`Ez/λSO = 0.5 in (c) and (d) [37].

to phase boundaries a strong modulation of the photonic shifts
is possible. For instance, ∆IF changes from positive to neg-
ative values near semimetallic phases even for small varia-
tions of Ez or Λ (see Fig. 3c). We point out that ∆r (∆IF)
gives the dominant contribution to ∆±SHEL in QHSI and BI
(AQHI and PS-QHI) phases. Both ∆IF and ∆r are equally
relevant as we approach semimetallic states. The width of
the region around a phase transition where abrupt variations
in the SHEL occur is determined by the frequency of the im-
pinging beam. Indeed, for beam frequencies smaller than all
Dirac gaps no electrons can be excited from the valence to the
conduction band. On the other hand, for phase space regions
where |∆η

s | < ~ω the Gaussian wave may generate electron-
hole pairs, modifying the layer’s conductivity.

A closer inspection of the regions next to phase transi-
tion boundaries shows that topology plays a crucial role in
the SHEL. Let us consider that we drive the system through
distinct phases by increasing Λ while keeping Ez fixed. For
e`Ez/λSO = 0.5 (Fig. 3c) we note that ∆IF and ∆r present a
smooth transition from the QSHI to the PS-QHI phase while
crossing the SDC phase with C

SDC
= ±1/2. However,

a highly non-monotonic behavior appears near the C
SDC

=
±3/2 semimetallic phases as the system goes from the PS-
QHI to the AQHI state. We checked that ∆IF and ∆r present
a non-trivial (monotonous) dependence with Ez and Λ in any
transition where all (at least one) phases involved have C 6= 0
(C = 0). Since C depends on the characteristics of the open
(closed) gaps, this result suggests that the SHEL is sensitive

to the spin and valley indices of the charge carries affected
by the transition. This is in remarkable contrast with effects
of topological phase transitions in quantum fluctuations [26],
where electromagnetic interactions in semimetallic phases de-
pend on the number of closed gaps but not on the values of η
and s. Hence, light beam shifts could be used to probe the
dynamics of specific Dirac gaps across a phase transition. Fi-
nally, note that ∆IF changes sign whenever the polarization of
the high frequency laser is swapped from left (Λ > 0) to right
(Λ < 0), enabling control of the SHEL direction. Contrari-
wise, ∆r is an even function of Λ. Inversion of Ez direction
does not affect the sign of any shifts (not shown).

Figure 3d depicts the impact of doping on the SHEL phase
transitions for e`Ez/λSO = 0.5. In the regions where |µ| <
|∆η

s | the effect of doping can be neglected and the shifts cor-
respond to those due to neutral monolayers. However, close
to phase transition boundaries where |µ| > |∆η

s |, intraband
transitions take place and the influence of doping is apprecia-
ble. In contrast to neutral layers, for instance, a peak in ∆r

emerges around Λ/λSO = 0.5 for µ = 0.05λSO. Further in-
creasing the Fermi energy allows to shift the peak’s position
to lower values of Λ. Similarly, near the phase transition at
Λ/λSO = 1.5 a crossover in ∆r from two narrow deeps to a
broad one occurs as doping is increased.

In order to get further insight on the interplay between topo-
logical phase transitions and the SHEL, we perform an ex-
pansion of Eq. (2) for small frequencies and dissipation for
a neutral monolayer at zero temperature. For a s-polarized
beam and up to leading order in ω, Γ, one has

∆
±(s)
SHEL

∣∣∣C=0

QSHI, BI
SVPM

=−c sinθ cosθ

[
~
|∆e|

Ce cosθ ± 1

ω

]
,

∆
±(s)
SHEL

∣∣∣C6=0

SPM
SDC

=
−c sinθ cosθ

n2π2 + 64C2 cos2θ

[
~
|∆e|

64C
3

cosθ ±n
2π2

ω

]
,

∆
±(s)
SHEL

∣∣∣C6=0

AQHI
PS−QHI

=− ~c
3|∆e|

sinθ

[
1

C
± Z0σ0Γ

πω

]
, (4)

where Ce = |∆e|2
∑′

η,s ηsign(∆η
s)/2∆η

s
2, |∆e|

−1

=∑′

η,s|∆η
s |
−1

, and Z0 is the vacuum impedance. Similar re-
sults hold for p-polarized waves by replacing sinθ → − sinθ
and cosθ → 1/ cosθ. Note that topologically trivial phases
have the same dependence with the incidence angle θ and ma-
terial properties, without distinction between insulating and
semimetallic states. Moreover, for C = 0 and small frequen-
cies the first term in ∆

±(s)
SHEL can be neglected. Consequently,

the SHEL becomes independent of the optical response of the
2D layer and ∆

±(s)
SHEL is maximized for θ ' π/4. A different

landscape takes place when topology enters into play. Unlike
the C = 0 case, nontrivial topological states allow for a clear
distinction between semimetallic and insulating phases of the
system. Indeed, in the AQHI and PS-QHI states the SHEL
is a harmonic function of θ and decays with C. However,
at phase transition boundaries a complex interplay between
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Figure 4. (a)-(d) Photonic spin Hall shifts ∆−
SHEL (solid) and ∆+

SHEL

(dashed) as a function of different parameters for a suspended neu-
tral monolayer and s-polarization. Dotted curves correspond to the
results in Eq. (4). (e) ∆IF and (f) ∆r versus wavelength for a p-
polarized beam impinging on a stanene coated SiC substrate. In all
panels {e`Ez/λSO,Λ/λSO} = {0, 0} (QSHI, blue), {0, 1} (SPM,
black), {0, 2} (AQHI, red), and {0.5, 1.5} (SDC, orange).

θ and C determines the characteristics of the reflected beam.
Also, the fact that one cannot split the contributions of C and
n to ∆

±(s)
SHEL in the SPM and SDC states ratifies our conclu-

sion that photonic shifts are sensitive not only to the number
of closed gaps but also to the spin and valley indices.

Figure 4a depicts the behavior of the SHEL shifts as a func-
tion of the incidence angle at different points of the phase dia-
gram. Note that for C 6= 0 the incidence angle that maximizes
∆
±(s)
SHEL is a function of the material properties in each phase.

Figure 4b shows the dependence of ∆±SHEL with the frequency
of the Gaussian beam, clearly illustrating the 1/ω increase of
the shifts at long wavelengths (see Eq. (4)). For frequencies
~ω & λSO all shifts monotonically decrease, preventing the
SHEL to effectively probe distinct topologies. In both Figs.
4a and 4b the approximated results obtained through Eq. (4)
are in excellent agreement with the full numerical calculations
given by Eq. (2). In the AQHI phase, however, Eq. (4) is
inaccurate for grazing incidence (θ & 85o) and frequencies
~ω & 0.5λSO. Figures 4c and 4d describe how dissipation and
temperature affect the SHEL in the graphene family. We note
that increasing either Γ or T results in reduced contrast be-
tween electronic phases, although a better distinction between
∆+

SHEL and ∆−SHEL is achieved. It is also clear that thermal ef-
fects have a greater impact on the SHEL than dissipation. The
non-monotonic behavior of ∆±SHEL as we change T follows

from the fact that thermal excitations can create electron-hole
pairs in the monolayer even if the frequency of the incident
beam does not match any of the mass gaps. Finally, despite
recent progress in the fabrication of free standing stanene [20]
indicates that our results could soon be tested in suspended
staggered monolayers, the inclusion of a substrate may be rel-
evant for practical applications. Metallic substrates are highly
reflective in the frequency ranges of interest, thus dominat-
ing the SHEL over the topological phase transitions emerging
from the 2D semiconductor. On the other hand, a good con-
trast between the shifts at different electronic phases can be
achieved for lossless low-refractive index dielectric substrates
(ε < 1.6). In Figs. 4e and 4f we show the Imbert-Fedorov
and relative SHEL shifts as a function of wavelength λ for
stanene on top of silicon carbide [38]. Although it is difficult
to discern the electronic phases for a s-polarized beam (not
shown), the effect of topological phase transitions on ∆IF and
∆r is clearly appreciated for p-polarization and mid-infrared
frequencies (in the range shown 0.44 . Re(ε) . 1.52 and
Im(ε) < 0.09). Note that ∆±SHEL can be ∼ λ and the posi-
tion of the peak (zero) of ∆IF (∆r) depends on the electronic
phase, which is another signature from the distinct topologies
enabled by the graphene family.

In summary, we have discussed topological phase transi-
tions in the photonic spin Hall effect due to interaction of a
Gaussian beam with staggered monolayers of the graphene
family. We showed that the SHEL presents signatures of the
number of Dirac cones closed and it depends on the Chern
number characterizing the topology of each phase. Given the
reported sensitivities for measuring the SHEL through weak
measurement approaches [5], we conclude that an experimen-
tal demonstration of our results is within current capabilities.
In spite of the fast experimental progress in the synthesis of
staggered materials of the graphene family [14–20] suggests
that they will be easily accessible in the near future, some of
our results can be tested in graphene, as it presents topolog-
ical insulator features under circularly polarized illumination
(only QSHI and AQHI phases can be probed in this case) [39].
We envision the effects predicted here will greatly impact re-
search in spinoptics, spintronics, and valleytronics.
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