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Time-reversal invariant superconductors in three dimensions may contain nodal lines in the Brillouin zone,
which behave as Wilson loops of 3d momentum-space Chern-Simons theory of the Berry connection. Here we
study the conditions of realizing linked nodal lines (Wilson loops), which yield a topological contribution to the
thermal magnetoelectric coefficient that is given by the Chern-Simons action. We find the essential conditions
are the existence of torus or higher genus fermi surfaces and spiral spin textures. We construct such a model
with two torus fermi surfaces, where a generic spin-dependent interaction leads to double-helix-like linked nodal
lines as the superconductivity is developed.

Nodal-line superconductor is an intriguing class of three
dimensional (3d) unconventional superconductor that respects
time-reversal symmetry. Unlike usual superconductors which
are fully gapped, a nodal-line superconductor contains closed
gapless nodal lines in the Brillouin zone (BZ), which are pro-
tected by time-reversal symmetry. In nature, such supercon-
ductors widely occur in cuprates [1–4], iron-based supercon-
ductors [5, 6] and noncentrosymmetric superconductors [7, 8].
As 1D loops, the nodal lines in the 3D BZ can form nontriv-
ial links[9–12], where the linking numbers are topologically
invariant and give a classification of nodal-line superconduc-
tors [9]. Physically, change of linking numbers of nodal lines
has been shown to yield a topological shift in the coefficient
of thermal magnetoelectric effect, which is also known as the
theta angle [9, 13, 14]. This is because the theta angle is the-
oretically given by the action of the Chern-Simons (CS) the-
ory of Berry connection in the 3D BZ [13], while the nodal
lines behave exactly as Wilson loops[9] and linking numbers
contribute topologically[15, 16]. On the surface of supercon-
ductor, linked nodal lines lead to topologically protected kiss-
ing Majorana flat bands which are bounded by the projected
nodal lines [17–21]. However, superconductors with linked
nodal lines have not been discovered. In this letter, we inves-
tigate the physical conditions for realizing linked nodal-line
superconductors, and we show the key ingredients for linked
nodal lines to occur are torus or higher genus fermi surfaces
and certain spiral spin textures. In particular, we construct a
double helix nodal-line superconductor lattice model, which
contains two pairs of linked nodal lines resembling the DNA
double helix structure [22, 23] under the standard BCS mean
field theory. Our theory gives a guidance on the search for
linked nodal-line superconductors in nature.

Though nodal lines could occur in centrosymmetric TRI
materials such as cuprates, they appear more commonly in
noncentrosymmetric TRI superconductors, where the elec-
tron bands are generically nondegenerate due to spin-orbital
couplings (SOCs) [8, 24]. Here we restrict ourselves to the
noncentrosymmetric TRI superconductors, which allows us
to consider a larger variety of Hamiltonians. Nodal lines are
protected by the time-reversal symmetry. Given an electron
band of dispersion ε(k) where k is the lattice momentum, the
time-reversal symmetry restricts its pairing amplitude ∆(k) to
be real in a TRI basis [25]. Therefore, the system is gapless

when the two conditions ε(k) = ∆(k) = 0 are satisfied, which
gives rise to one-dimensional nodal lines in the BZ. Note that
the nodal lines are restricted on the Fermi surface of the band
given by ε(k) = 0, so the fermi surface topology will limit the
possible configurations of nodal lines.

It is easy to see that a spherical fermi surface does not
support linked nodal lines. While if the fermi surface is a
torus, one is able to draw two nodal lines linked with each
other along the toroidal direction of the torus, which resem-
bles a closed DNA double helix. An integer Gauss linking
number[15, 16, 26] nL can be defined for such two nodal lines,
which is equal to the total number of coils of the double helix
(up to a sign). However, one must note the linking number
nL reverses sign under time-reversal transformation, so a dou-
ble helix cannot be TRI by itself. Instead, the superconductor
must contain minimally two double helices which are time
reversal partners of each other, and this requires at least two
torus fermi surfaces forming a time reversal pair. Fig.1a shows
such a configuration of two double helices with linking num-
ber nL = ±1, respectively, where the two torus fermi surfaces
are cylinders periodic in the kz direction. For fermi surfaces
with a higher genus (number of holes) Ng ≥ 2, it is possible to
draw two such double helices on a single TRI fermi surface,
and Fig.1d shows such an example. In nature, fermi surfaces
with a high genus are quite common in metals.

Given a suitable topology of fermi surfaces, we still need a
nontrivial electron-electron interaction to achieve linked nodal
lines in the superconductor. Here we take the example of
Fig.1a where two cylindrical torus fermi surfaces are cen-
tered at (kx, ky) = (±Qx, 0), and investigate how the double-
helix linked nodal lines of linking number nL = ±1 can be
realized. The Cooper channel interaction of the superconduc-
tor is generically given by HI =

∑
k,k′ (Vkk′/2N)c†kc†

−kc−k′ck′ ,
where ck and c†k are the electron annihilation and creation
operators at momentum k near the fermi surfaces, Vkk′ are
the interaction coefficients, and N is the number of unit
cells. In the presence of time-reversal symmetry, the pair-
ing amplitude ∆k = 〈

∑
k′ Vkk′c−k′ck′〉/N is real. The mean-

field free energy of the superconductor is then F(∆k) =∑
k,k′ (∆k/2Ek)Vkk′ (∆k′/2Ek′ )/2N, where Ek = (ε2

k + ∆2
k)1/2 is

the Bogoliubov-de Gennes quasiparticle spectrum. Therefore,
∆k and ∆k′ tend to have the same (opposite) sign for Vkk′ < 0
(Vkk′ > 0). By definition of nodal lines, ∆k on a fermi sur-
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FIG. 1: Examples of fermi surfaces compatible with TRI linked
nodal lines. a-c shows how such linked nodal lines may occur on
torus fermi surfaces. d shows a possible configuration of linked nodal
lines on a genus two fermi surface.

face will take opposite signs on the two sides of a nodal line.
For the double helix nodal lines shown in Fig.1a, one finds
∆k∆k′ ≤ 0 when k − k′ = (0, 0, π), or when k and k′ lie in
the same plane of constant kz and opposite to each other on
the same cylindrical fermi surface. This motivates us to write
down the following interaction for k and k′ on the same fermi
surface:

Vkk′ = −
(
η1k̃xk̃′x + η2kyk′y

)
cos(kz − k′z) , (1)

where we have defined k̃x = kx ∓ Qx for momentum k near
(kx, ky) = (±Qx, 0), respectively. The interaction at the other
momentums can be obtained via the relation Vkk′ = −Vk,−k′ =

−V−k,k′ . We expect the double helix nodal lines with linking
number ±1 to be favored when such a term dominates in the
electron-electron interaction near fermi surfaces.

Such a k-dependent interaction can be realized from a
spin-dependent Heisenberg interaction together with a spiral
fermi-surface spin texture due to SOC. To illustrate this idea,
we can start from two spin-degenerate cylindrical fermi sur-
faces at (kx, ky) = (±Qx, 0), and add a SOC as follows:

Hsoc(k) = g(k) ·σ = λ(kyσx − k̃xσy) + λz(sin kzσx ± cos kzσy),
(2)

where σx,y,z are the Pauli matrices for spins, the ± signs corre-
spond to k near (kx, ky) = (±Qx, 0), respectively, and we keep
only the leading order expansion in k̃x and ky. Due to the SOC,
the fermi surfaces split into two inner cylinders and two outer
ones centered at (kx, ky) = (±Qx, 0). In particular, the λz term
leads to a spiral spin texture on each fermi surface that rotates
along the kz direction. For a generic spin-dependent interac-
tion HI = V(r1 − r2)ρ(r1)ρ(r2) + J(r1 − r2)S(r1) · S(r2) where
ρ(r) and S(r) are the local electron density and spin opera-
tors. The projection onto the spin texture will naturally yield
an interaction as shown in Eq.(1), as we will show later.

We also want to mention a different way to understand the
linked nodal lines induced by SOC as follows. Generically,
the TRI pairing amplitude of the two bands splited by SOC is
a matrix in the natural electron spin sz = ±1/2 basis as follows
[27]:

∆ss′ (k) =
{[
ψ(k) + d(k) · σ

]
iσy

}
ss′

, (3)

where ψ(k) = ψ(−k) gives a singlet pairing while d(k) =

−d(−k) corresponds to a triplet pairing, both of which are real
functions of k. For a system with a SOC given by Hsoc =

g(k) ·σ, it is shown [28] that the most favorable pairing ampli-
tude satisfies d(k) = ξ(k)g(k), where ξ(k) is a scalar function.
This yields a pairing amplitude ∆(k) = ψ(k) ∓ ξ(k)|g(k)| on
the two outer (− sign) and inner (+ sign) cylindrical fermi sur-
faces. In the simplest case when both ψ(k) = ψ and ξ(k) = ξ
are constants, nodal lines will occur at the intersections be-
tween the outer cylindrical fermi surfaces and the constant
|g(k)| surfaces defined by ∆(k) = ψ − ξ|g(k)| = 0. Fig.2a
shows the intersection nodes A, B and A′, B′ in the kz = 0
plane, where the white circles are the outer cylindrical fermi
surfaces, and the yellow loops are constant |g(k)| = ψ/ξ > 0
surfaces, which are centered at Λ and Λ′ where |g(k)| = 0. The
light (dark) color represents the regions where |g(k)| is large
(small), and the arrows show the spin textures in the BZ. As kz

increases from 0 to 2π, the Λ point moves along a spiral tra-
jectory

(
Qx +

λz
λ

cos kz,−
λz
λ

sin kz, kz

)
, and similarly for Λ′, so

the gapless nodes A, B (and A′, B′) will undergo a 2π rotation
with respect to kz, yielding a double helix nodal line structure.
We note that in order to have intersection nodes, the value
of ψ/ξ must be within a certain range, which is determined
by interactions. Similarly, nodal lines may also occur on the
inner fermi surfaces at intersections where |g(k)| = −ψ/ξ (if
ψ/ξ < 0), which also form double helices.

Now we rewrite the above model in a 3d lattice, and
demonstrate the above interaction and SOC indeed give rise
to double-helix linked nodal lines. We assume the following
single-electron Hamiltonian with SOC:

H0(k) = t′ cos 2kx − t cos ky + λ1σx sin ky + λ2σy sin 2kx

+ λ3σx sin kz + λ4σy sin kx cos kz − µ ,
(4)

where t and t′ are positive, and λi (1 ≤ i ≤ 4) are SOC
parameters which are TRI but inversion asymmetric. When
the SOC is zero, the electron kinetic energy has its minima
at (kx, ky) = (±π/2, 0). For chemical potential µ satisfying
−t′ − t < µ < −|t − t′|, the fermi surfaces are two spin-
degenerate cylindrical tori centered at the minima. When the
SOC is turned on, the fermi surfaces split into two inner tori
and two outer tori, and acquire spin textures. For convenience,
we fix λ1 = 2λ2 = λ and λ3 = λ4 = λz. The SOC reduces
to the form of Eq.(2) in the vicinity of (kx, ky) = (±π/2, 0).
In principle, the Hamiltonian could contain other hopping or
SOC terms, but we will keep them zero since they do not
qualitatively change the physics [29]. In the following discus-
sion, we will fix the single-particle parameters at t′ = 0.25t,



iii

ΛΛ
A

BA

B

kx π− π
− π

π

ky

FIG. 2: The arrows show the spin textures of the lower electron band
in the kz = 0 plane for λ = −0.02t, λz = 0.005t, and the brightness
is proportional to the SOC strength |g(k)| (brighter color for larger
|g(k)|). In particular, |g(k)| = 0 at Λ and Λ′ points. The nodal lines
occur at A, B and A′, B′ points which are intersections between the
fermi surfaces as given by the white circles and the constant |g(k)| =
ψ/ξ contours (yellow circles).

λ = −0.2t, λz = 0.4t. For simplicity, we will also fix the chem-
ical potential at µ = −1.6t slightly above the band minimum,
so that the two inner torus fermi surfaces shrink to zero [29],
with only the two outer torus fermi surfaces left.

We then add an electron-electron interaction to the system
as follows[30]:

Hint =
1
N

∑
q

V(q)ρqρ−q +
1
N

∑
q

J(q)Sq · S−q , (5)

where ρq =
∑

ks c†k+q,sck,s and Sq = 1
2
∑

kss′ c†k+q,sσss′ck,s′

are the electron density and spin operators at momentum q.
Such an interaction may generically arise from the phonon
exchange and the electron itinerant magnetism. Explicitly,
we assume the interaction potentials take the form V(q) =

V0 + Vx cos 2kx + Vy cos ky and J(q) = Jx cos 2kx + Jy cos ky,
where V0,Vx,Vy, Jx and Jy are constants. With the spin tex-
tures known, one can readily project the interaction onto the
two cylindrical fermi surfaces. Using a k · p expansion, one
can show the Cooper channel interaction potential Vkk′ for k
and k′ on the same fermi surface is given by [29]:

Vkk′ = η0 −
(
η1k̃xk̃′x + η2kyk′y

)
cos

[
φ(k) − φ(k′)

]
− η3(k̃x

2
+ k̃′x

2
) − η4(k2

y + k′2y ) .
(6)

where we have kept terms up to the second order in k̃x and ky.
Here φ(k) is the angle of the spin direction at k in the kx-ky

plane, η1 = −(4Vx + Jx), η2 = −(Vy + Jy/4), η3 = 2Vx − 3Jx/2,
η4 = Vy/2 − 3Jy/8, η0 = V0 + η3/2 + 2η4, and we have k̃x =

kx∓π/2 for momentum near (kx, ky) = (±π/2, 0), respectively.
Compared with Eq.(1), the above interaction contains a few
other less important terms and has the spin angle φ(k) in place

of kz. However, since the spin angle φ(k) increases(decreases)
by 2π as kz goes from −π to π on the two fermi surfaces, the
above interaction still satisfies the condition for double helix
nodal lines. Based on this interaction near fermi surfaces, we
solve numerically the linearized gap equation that determines
the mean-field superconductivity critical temperature Tc [30]:

−χΨ(k) =
1

2Nεc

∑
k′

Vkk′Ψ(k′) , (7)

where εc is the interaction cutoff energy (e.g. Debye energy),
k is summed within the energy shell [−εc, εc] near the fermi
surface, while Ψ(k) ∝ ∆(k) is an eigenvector of Vkk′ , and λ
is the eigenvalue. For χ > 0, the critical temperature is given
by kBTc = 1.14εce−1/χ. For χ ≤ 0, the eigenvector Ψ(k) is
not a pairing instability. The most favorable pairing function
∆(k) is proportional to the eigenvector Ψ(k) with the largest
positive eigenvalue χ.

Fig.3a shows a phase diagram with respect to Jx = Jy = J
and V0, where we have fixed Vx = Vy = V < 0. Different
phases are distinguished by the topology of their nodal lines,
and are labeled using different Greek letters. Both the α phase
and the α′ phase are double-helix nodal-line phases with dif-
ferent double helix helicities. The typical nodal-line shapes of
the α and α′ phases are shown in Fig.3b and 3c, respectively,
where θ = arg(k̃x + iky) is the poloidal angle of the torus fermi
surface. Fig.3e shows the double-helix nodal lines of the α
phase in the 3d BZ. We note that the physical picture in Fig.2
only predicts the double-helix helicity of phase α, which is
valid for small λz/λ [29]. In the case we calculated in Fig.3
where λz/λ is large, both phases α and α′ arise, which is be-
cause the projected interaction in Eq.(6) in this case does not
give a double-helix helicity preference. The β phase has two
unlinked nodal loops as shown in Fig.3d, while the γ phase
is fully gapped without any nodal lines. The phase diagram
shows that ferromagnetic spin interactions J < 0 tend to favor
double-helix nodal lines, which makes η1 and η2 positive as
required in our argument. We note that ferromagnetic elec-
tron interactions are quite common for metals.

We have seen that the realization of linked nodal lines
requires torus or higher genus fermi surfaces, and strongly
varying spin textures along the toroidal direction of the fermi
surfaces. These conditions put a limitation on the crystalline
symmetry of candidate materials. In general, a lower crys-
talline symmetry is preferred. In particular, in the double he-
lix nodal line configuration in Fig.1a, the only allowed point-
group symmetry (up to a translation) is either a two-fold ro-
tation C2x about x axis or a mirror reflection Mx from x to
−x. In other configurations as shown Fig.1b-d, a few other
symmetry operations such as the three-fold rotation C3z are
allowed. For instance, the configuration of Fig.1c is allowed
for materials with a hexagonal 3R structure, which is common
in transition metal dichalcogenides[31]. We therefore suggest
to search for (double-helix) linked nodal-line superconduc-
tors in layered metallic materials with strong SOCs and low
crystalline symmetries, such as lithium-inserted metal oxide,
transition metal dichalcogenides and transition metal halides,
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etc[32], where torus fermi surfaces and strongly varying spin
textures are more likely to occur.

The detection of linked nodal lines is also essential
in experiments. A few techniques such as corner junc-
tion [2, 33], angular-resolved thermal transport measurement
[34, 35] and angular-resolved photoemission spectroscopy
(ARPES)[6] have been used to reveal the nodal structure of
superconductors, which will, however, be more complicated
for linked nodal lines. Instead, we suggest a possibly easier
way to reveal linked nodal lines through probing the surface
states on the surface cuts of different directions using ARPES.

As we mentioned at the beginning, nodal line superconduc-
tors exhibit topologically protected zero energy Majorana flat
bands, which are bounded by the projection of nodal lines on
the surface [17–19]. If two nodal lines are linked, their pro-
jections will necessarily cross each other on any surface cuts.
Therefore, the corresponding surface Majorana flat bands al-
ways kiss each other as shown in Fig.4, no matter which sur-
face cut one takes.

In conclusion, we have demonstrated the possibility of
realizing linked nodal lines in noncentrosymmetric super-
conductors with torus or higher genus fermi surfaces and
strongly k-dependent spin textures, and studied an explicit
lattice model that realizes a double-helix nodal-line supercon-
ductor. These results may serve as a preliminary guidance on
searching for and detecting linked nodal-line superconductors
in nature.
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