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We construct a low energy effective theory of anisotropic fractional quantum Hall (FQH) states.
We develop a formalism similar to that used in the bimetric approach to massive gravity, and
apply it to describe abelian anisotropic FQH states in the presence of external electromagnetic
and geometric backgrounds. We derive a relationship between the shift, the Hall viscosity, and
a new quantized coupling to anisotropy, which we term anisospin. We verify this relationship by
numerically computing the Hall viscosity for a variety of anisotropic quantum Hall states using the
density matrix renormalization group (DMRG). Finally, we apply these techniques to the problem
of nematic order and clarify certain disagreements that exist in the literature about the meaning of
the coefficient of the Berry phase term in the nematic effective action.

Introduction. In recent years there have been a
plethora of new advancements in the physics of fractional
quantum Hall effect. Notably, several related develop-
ments involving the interplay of quantum Hall physics
and geometry have emerged. First, it was recently under-
stood that the response of a quantum Hall state to vari-
ations of the background spatial geometry reveals uni-
versal properties of the state that go beyond topological
effective theory[1–17]. A particularly interesting quan-
tity is the Hall viscosity [18–20], which in rotationally
invariant systems is related to the shift[1, 19, 21], and
is given by a Berry phase accumulated by the quantum
Hall wavefunction on a torus under adiabatic changes of
the aspect ratio. When rotational invariance is broken,
the Hall viscosity becomes a multicomponent tensor [22],
however its properties and relation to Berry phases have
not yet been understood.

Additionally, there has been a flurry of recent
experimental[23–26] and theoretical [27–31] interest in
quantum Hall states with spontaneously broken rota-
tional symmetry, i.e. nematic quantum Hall states[32,
33]. Because the nematic order parameter is described
by a symmetric matrix, it couples to the microscopic
degrees of freedom in a way similar to the background
spatial metric [29, 30]. In the isotropic phase, fluc-
tuations of the nematic order parameter are massive
and describe the dynamics of the angular momentum 2
gapped Girvin-Macdonald-Platzman (GMP)[34] magne-
toroton mode [29]. In the symmetry broken phase the
fluctuations of the order parameter are gapless (up to
lattice and boundary effects).

In this Letter, we develop a unifying formalism that
will bridge the chasm between these new areas of quan-
tum Hall physics. We will explain how to construct a
low energy effective theory of quantum Hall states with
quadrupolar anisotropy, coupled to perturbations of both
the electromagnetic field and spatial geometry. Our con-
struction is reminiscent of a bimetric theory of massive
gravity[35]. The first metric is determined by the geome-
try of space, while the second metric is determined by the

anisotropy. Note, however, that we treat both metrics as
non-dynamical background fields. We will use this for-
malism to derive (the non-dissipative parts of) linear re-
sponse coefficients in the presence of anisotropy. We also
introduce a new response function that probes the cou-
pling of a quantum Hall state to anisotropy. In order to
verify our model, we numerically compute the Hall viscos-
ity for a variety of anisotropic quantum Hall states. Our
construction is also well-suited to describe the nematic
quantum Hall states in the isotropic phase and with a
quenched configuration of the nematic order parameter
as discussed in the Supplementary Material[36].
Geometry. We start with a brief review of the geom-

etry relevant in quantum Hall physics. Spatial geome-
try is described by a set of vielbeins – or frame fields –
eAµ = {eA0 ≡ 0, eAi } along with their “inverses” Eµ

A [37].
Here and throughout we use µ, ν = 0, 1, 2, and i, j = 1, 2
to index ambient spacetime and space respectively, while
A,B = 1, 2 will index flat internal space. The spatial
metric gij is given as

gij = eAi e
B
j δAB. (1)

Parallel transport in spacetime is defined by demanding
that the vielbeins are covariantly constant, i.e.

∇µe
A
ν = ∂µe

A
ν − Γλ

µνe
A
λ + ωA

µBe
B
ν = 0 , (2)

where ∇µ is a covariant derivative with a spacetime in-
dex. These equations define both a spin connection ωA

µ B

and a Christoffel connection Γi
µj . The Christoffel con-

nection can be expressed in terms of derivatives of the
metric, although we will not need the explicit expression
here. Solving Eq. (2) for the spin connection, we find [38]

ω0 =
1

2
ǫA

B
(
Ei

B∂0e
A
i

)
, (3)

ωk =
1

2
ǫA

B
(
Ei

B∂ke
A
i − Ei

Be
A
j Γ

j
ki

)
, (4)

where we have defined the abelian spin connection via
ωA
µ B ≡ ǫB

Aωµ, where ǫB
A is the Levi-Civita tensor.
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Lastly, we review the transformation laws for these
geometric fields. First, we note that the metric, the
vielbeins, and the spin connection all transform as ten-
sors under changes in the ambient coordinates (here we
restrict to transformations that leave time invariant).
Next, since the vielbeins are defined through the factor-
ization Eq. (1), they suffer an SO(2) gauge ambiguity

eAµ → eA
′

µ SA′

A , Eµ
A → Eµ

A′S
A′

A , (5)

for S = exp(iϕǫ) ∈ SO(2); the spin connection trans-
forms under rotations as an abelian gauge field

ωµ → ωµ + ∂µϕ . (6)

Anisotropic geometry. Anisotropy naturally arises in
condensed matter systems through symmetric rank two
tensors, such as the effective mass tensor or dielectric
tensor in crystals. Taking inspiration from this, we
will introduce anisotropy into the quantum Hall sys-
tem through a symmetric tensor V , distinct from the
spatial metric tensor g. To be consistent, we must be
careful to account for the difference between spatial ge-
ometry – which we view as extrinsically imposed – and
anisotropy – which we view as intrinsic. Our discussion
here elaborates on and extends various observations made
in Refs. [29, 30] and is the first result of the Letter.
We will choose a fairly general type of anisotropy

parametrized by a quadrupolar background field V AB(x)
which we take to have internal SO(2) indices. We require
that V AB is symmetric and positive-definite. We also de-
fine the inverse matrix vAB satisfying

vABV
BC = δCA (7)

Without loss of generality we can fix detV = 1; changes
to the determinant of V can be compensated by a uniform
rescaling of coordinates, which would not introduce any
anisotropy. In analogy with the spatial metric, we can
factorize V and v as

V AB = ΛA
αΛ

B
β δ

αβ , vAB = λα
Aλ

β
Bδαβ (8)

Note that the indices α, β = 1, 2 appearing in Eq. (8)
are a new type of internal index. Rotations acting on
this index are a new gauge redundancy, distinct from the
internal SO(2) rotational symmetry of the previous sec-
tion. In order to distinguish between these two gauge
groups, we will refer to the new redundancy in the de-
scription of anisotropy as ŜO(2).
It is natural to define an anisotropy metric

ĝij ≡ eAi e
B
j vAB = δαβeAi λ

α
Ae

B
j λ

β
B = δαβ êαi ê

β
j , (9)

where we have introduced eAi λ
α
A = êαi . We similarly de-

fine the inverse

Ĝij ≡ Êi
AÊ

j
Bδ

AB. (10)

With two metrics around, we must be careful to distin-
guish between tensor fields and their inverses. We use the
convention that for the spatial metric only gijgjk = δik.
Spatial indices are raised and lowered by this metric,
while internal indicies A and α are both raised and low-
ered by δ symbols. It would be a grave error to use ĝ or
Ĝ to manipulate indices.
The anisotropy data ĝ and ê can be used to construct

connections and curvatures, just like their geometric rel-
atives from the previous Section. Any description of an
anisotropic system in terms of ê with fully contracted
indices will automatically be spatially covariant. In par-
ticular, we may define a hat-covariant derivative ∇̂ sat-
isfying

∇̂µĝij = 0 , ∇̂µê
α
j = 0 . (11)

This defines for us implicitly an affine connection Γ̂, as
well as an ŜO(2) spin connection ω̂ given by replacing all
factors of the metric and vielbeins in Eqs. (3)–(4) with
their hatted cousins. Clearly, ω̂ transforms as an abelian
ŜO(2) gauge field under rotations in the internal {α, β}
space, in analogy with Eq. (6).
Given these two geometries, we define a matrix-valued

one-form Ci
µj

Ci
µj = Γi

µj − Γ̂i
µj . (12)

We also define Cµ = ǫi
jCi

jµ for future use. There are no
more independent objects.
The cohomology class (or, informally, the Chern num-

ber) χ̂ = 1
2π

∫
dω̂ is not independent of the Euler charac-

teristic χ. We find

χ̂ =
1

4π

∫ √
ĝR̂ = χ+Ndiscl , (13)

for some integer Ndiscl. Indeed, taking V AB = δAB we
have ω̂µ = ωµ, and so χ̂ = χ. On the other hand, when
the metric (can be and) is set to identity gij = δij we
find

Ndiscl =
1

2π

∫
dω̂

∣∣∣
gij=δij

, (14)

where Ndiscl counts the number of singularities of the
anisotropic connection. When V AB comes from a ne-
matic order parameter, this integer is related to the num-
ber of nematic disclination defects.
Anisotropic Chern-Simons theory. We now consider a

generic abelian, anisotropic one-component FQH system
in a curved space, coupled to a weak external electro-
magnetic field. The low energy theory for such a phase is
a U(1)k Chern-Simons action coupled to our anisotropy
connections, with k = 2p + 1. Note that an anisotropy
tensor V AB can be generated dynamically from the in-
terplay between the dielectric tensor, band mass curva-
ture, in-plane magnetic field, quadrupolar interactions,
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etc. The only assumption we make is that such a V AB

exists. Although we will primarily be interested in cases
where the spatial metric is flat or nearly flat, we must
first formulate the theory in a general background, so as
not to miss any allowed couplings, nor introduce prohib-
ited ones.
Given our previous discussions, the most general low

energy effective action is [39]

S =
2p+ 1

4π

∫
ada−

1

2π

∫
Ada , (15)

where

Aµ = Aµ + sωµ + ςω̂µ + ξCµ . (16)

The coefficients s and ς must be quantized because ω and
ω̂ are connections (as opposed to one-forms), however ξ
can be an arbitrary function of the anisotropy. For small
anisotropy we expect ξ to be approximately independent
of the anisotropy, and we focus on this situation through-
out the remainder of the text. We note that a nonzero
ξ explicitly breaks the apparent symmetry between the
ambient and anisotropy metrics, and cannot be excluded
on the basis of effective field theory.
Supplementing the action (15) with an appropriate

gauge-fixing condition [8], we integrate out a to derive
the generating functional [40]

W =
ν

4π

∫
AdA+

νs

2π

∫
Adω+

νς

2π

∫
Adω̂+

νξ

2π

∫
AdC ,

(17)
where ν = 1/(2p+ 1) and we have dropped purely grav-
itational terms. The electric charge density is given by

ρ =
ν

2π
B +

νs

4π
R+

νς

4π
R̂ +

νξ

4π
ǫij∂iCj , (18)

which implies the total particle number on a sphere

ν−1N = Nφ + S + ςNdiscl , (19)

where S = 2s̄ = 2(s + ς) is the shift [1, 21]. We see
that anisotropy provides a natural way to split the mean
orbital spin s̄ into two parts: one that comes from the ge-
ometric spin and another one that couples to anisotropy.
Thus we will refer to ς as anisospin by analogy. To re-
mind the reader that the anisospin bears a resemblance
to the ordinary orbital spin, we denote it by ς , the Greek
“final Sigma”.
Hall viscosity and response to anisotropy. We next

consider the response of the stress tensor to applied
strains, defined from the generating functional as

τµA =
δW

δeAµ
= λµ λ

A Be
B
λ + ηµ λ

A B∂0e
B
λ . (20)

We focus on the non-dissipative Hall viscosity

(ηH)
µ λ

A B =
1

2

(
ηµ λ

A B − ηλ µ
B A

)
. (21)

In the rotationally invariant case, it has one independent
component ηH = Sρ̄/4, proportional to the shift[19, 22],
and the average density ρ̄. In the presence of anisotropy
however, two new – and in general non-universal – con-
tributions to the viscosity tensor emerge. To study these,
we follow Haldane and introduce the contracted Hall ten-
sor [41, 42]

ηHAB =
1

2
ǫCDeA

′

µ eB
′

ν ǫA′AǫB′Bη
µ
C
ν
D. (22)

From the generating functional Eq. (17) we find [43]

ηHAB =
ρ̄

2
[sδAB + ςvAB + ξ (vACvCB − δAB)] . (23)

In the isotropic limit this reduces to ηHAB = ηHδAB. We
see that the Hall viscosity and the shift are only pro-
portional in the special cases that either the anisotropy,
or both ς and ξ vanish. The contributions from ξ and
ς can be distinguished through their scaling with V . In
the Supplementary Material, we use the Kubo formalism
to derive the Hall tensor ηH for a microscopic model of
non-interacting electrons with band-mass anisotropy.
The anisospin ς can also be calculated independent of

s via the response to anisotropy. To see this, we define
an “anisotropy current” [30]

N
A
α =

1

2λ

δW

δλα
A

, (24)

where λ = det(λα
A). Following the logic of Eqs. (17–23),

we find for the (contracted) odd part of the response of
N to ∂0λ

α
A,

ϑH
AB =

ρ̄

2
(ς + ξ) vAB . (25)

Note that ϑH
αβ contains only ς and ξ, but not s.

Anisospin for realistic systems. Next, let us consider
the case where anisotropy enters through the band mass
tensor m−1

ij , and through a distortion of the interaction
potential.

H = m−1
ij πiπj + U (|x− x′|; εij) , (26)

where πi is the momentum (independent of the
anisotropy) and U(|x − x′|; εij) is the Coulomb poten-
tial in a medium with a homogeneous – but not neces-
sarily isotropic – dielectric tensor εij [44]. We will as-
sume that these tensors are diagonal and unimodular,
with m−1

ij = diag(αm, 1
αm

) and εij = diag(αε,
1
αε

).
To simplify the problem we can make a global coor-

dinate rescaling to move all of the anisotropy into the
interaction. We are then left in Eq. (23) with a single
matrix vij = εikmkj = diag( αε

αm
, αm

αε
). Next, note that

each cyclotron orbit in the N -th Landau level carries or-
bital angular momentum

sN = (2N − 1)/2 (27)
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about its guiding center, an effect which originates from
the now-isotropic kinetic term. Hence, for FQH states in
the N -th Landau level we expect for the geometric spin
s = sN . This implies

ς = SN/2− sN , (28)

where SN is the shift for the state in the N -th Landau
level. We see that the shift S decomposes into cyclotron
and interaction contributions.
Alternatively, we could have rescaled the interaction

to move the anisotropy into the band mass tensor. This
would lead to a different matrix v′ij = m−1

ik ε−1
kj =

diag(αm

αε
, αε

αm
). However, note that the anisotropy is a co-

ordinate on the real projective line RP 1 ≈ S1, since the
overall scale of the Hamiltonian is unimportant.The two
rescalings v and v′ correspond to two different coordinate
patches covering RP 1. In the first case the coordinate is
α = αm

αε
, while in the second case it is α′ = 1/α. Either

coordinate choice is valid away from the poles of RP 1,
and so both parametrizations will produce equivalent re-
sults for all observable quantities. The effect of moving
all of the anisotropy into the mass tensor will result in
swapping the values of s and ς , which is consistent with
the transformation law of the Hall tensor Eq. (23) under
coordinate rescalings.
Anisotropic momentum polarization. We have nu-

merically calculated the Hall viscosity for a variety of
anisotropic quantum Hall states produced from (26), us-
ing DMRG on an infinite cylinder. In this geometry, the
Hall viscosity is related to the ‘momentum polarization’
Ppol, which is the additional momentum in the azimuthal
(x2) direction when the cylinder is cut in the x1 direction
[45–47]. For anisotropic systems,

Ppol = −
ηH22
2π

L2 +O(1). (29)

The coefficient ηH22 is given by Eq. (23). For the
anisotropic systems considered here, the extensive part
of the momentum polarization will depend on both the
orbital spin s and the anisospin ς . The O(1) constant is
related to the central charge[46]; studying its response to
the anisotropy is more computationally demanding than
the L2 term and is an interesting direction for future
work.
When a quantum Hall problem projected into a single

Landau level is written in a second-quantized basis, inter-
action anisotropy and mass anisotropy have an identical
effect on the matrix elements of the Hamiltonian, and
therefore lead to identical ground states in the orbital
basis. Therefore we can test both types of anisotropy
in (26) in a single simulation. To compute momentum
polarization from these states we first compute the real
space entanglement spectrum (RSES) across the cut, and
then average the momentum eigenvalues of all the levels
in the RSES, weighted by their entanglement eigenvalues.

FIG. 1. Hall viscosity ηH
22 as a function of anisotropy α, for

four different quantum Hall states. Data is obtained by in-
troducing anisotropy into either the mass (blue squares) or
interaction (green circles) part of the Hamiltonian. The lines
correspond to Eq. (23),using the values of s and ς given in
Eqs. (27-28), but allowing ξ to fluctuate to fit the data. The
value at α = 1 is the shift (SN). Data obtained using system
sizes L = 10− 20 and bond dimensions up to 5400. The data
is plotted such that in the isotropic case it is equal to the
shift.

The RSES depends on the shapes of the single-particle or-
bitals (which are modified by mass anisotropy but not by
interaction anisotropy), so the two types of anisotropies
will give different results even though the orbital basis
wavefunctions are identical. Additionally, for interaction
anisotropy we can compute momentum polarization from
Eq. (8b) of Ref. [46], which for isotropic single-particle
orbitals gives equivalent results for less computational
effort.

We compute the Hall viscosity by fitting the computed
momentum polarization vs. circumference L for a num-
ber of different system sizes. In Fig. 1 we show results for
the integer quantum Hall effect with ν = 1, 2, the Laugh-
lin state with ν = 1/3, and the hierarchy state at ν = 2/5.
The solid curves are fits to Eq. (23), where s and ς given
by Eqs. (27-28), and ξ is allowed to vary. We find in all
cases that the best fit occurs for −0.1 ≤ ξ ≤ 0. Finite-
circumference effects introduce anisotropy-dependent os-
cillations in Ppol. The values of ξ we extract may there-
fore be overestimates, since they could reflect these sys-
tematic errors. Reducing these finite-size effects would
require larger bond dimensions and would (with our
present computational resources) simply replace finite-
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size error with finite-bond-dimension error (finite-bond-
dimension error is very small in the data we present). A
finite size scaling analysis (presented in the Supplemen-
tary Material), suggests that ξ is small but nonzero. We
have also assumed that ξ is independent of λ, though this
is not required. This, along with finite size effects, may
explain the deviations from the fit we observe at large
anisotropy in ν = 1/3.
We thus see that the effect of anisotropy which couples

only to either the kinetic energy, or to the interaction
potential, is to split the contributions to the shift S into a
single particle “Landau orbit” contribution, and a many-
body “guiding center” contribution. Such a splitting was
first noted by Haldane[42, 48]. The values of s and ς
obtained are precisely those suggested in the previous
section[49].
Conclusions. We have introduced a framework for

studying the low energy properties of anisotropic quan-
tum Hall states. Using it, we constructed a family of
low energy theories for anisotropic abelian FQH states,
and studied their linear response. We have found a new
quantized topological number ς , dubbed anisposin, re-
lated to the non-dissipative linear response to anisotropy.
We have shown that in the presence of homogeneous
anisotropy the relation between the shift and the Hall vis-
cosity is modified – while the former remains quantized
for any value of the anisotropy (as long as it preserves
the inversion symmetry), the Hall viscosity is quantized
only in the isotropic case.
We have numerically investigated the Hall viscosity of

a variety of quantum Hall states coupled to both band-
mass and interaction anisotropy. We have shown that the
anisospin for these systems realizes a splitting of the shift
between Landau orbit and interaction contributions, first
pointed out in Ref. [42].
We believe that our formalism will have many ap-

plications, including a detailed investigation of the dy-
namics of gapped collective excitations in FQH sys-
tems, nematic phase transitions, and “hidden” geomet-
ric degrees of freedom [50]. The correspondence between
anisotropy and bimetric geometry allows one to construct
anisotropic CFT trial states and study corresponding
Berry phases, which we will discuss in a forthcoming
work. Finally, our geometric description may help to
build a bridge between FQH physics and bimetric theo-
ries of massive gravity.
Acknowledgements. We are pleased to thank A.

Abanov, E. Fradkin, J. Maciejko, Z. Papic, N. Regnault,
S. Sondhi, B. Yang, and M. Zaletel for useful discus-
sions. We also acknowledge M. Zaletel and R. Mong for
providing the DMRG libraries used for our simulations.
A.G. was supported by the Leo Kadanoff fellowship and
the NSF grant DMS-1206648. B.B. and A.G. gratefully
acknowledge support from both the Simons Center for
Geometry and Physics, Stony Brook University, as well
as the Banff International Research Station where some

of the research for this paper was performed. S.D.G.
is supported by Department of Energy BES Grant DE-
SC0002140.

∗ gromovand@uchicago.edu
† bbradlyn@princeton.edu

[1] X. Wen and A. Zee, Phys. Rev. Lett. 69, 953 (1992).
[2] D.-H. Lee and X.-G. Wen, Physical Review B 49, 11066

(1994).
[3] S. Klevtsov, Journal of High Energy Physics 2014, 1

(2014).
[4] F. Ferrari and S. Klevtsov, Journal of High Energy

Physics 86 2014 (2014).
[5] A. G. Abanov and A. Gromov, Phys. Rev. B 90, 014435

(2014).
[6] A. Gromov and A. G. Abanov, Phys. Rev. Lett. 113,

266802 (2014).
[7] A. Gromov and A. G. Abanov, Phys. Rev. Lett. 114,

016802 (2015).
[8] A. Gromov, G. Y. Cho, Y. You, A. G. Abanov, and

E. Fradkin, Phys. Rev. Lett. 114, 016805 (2015).
[9] T. Can, M. Laskin, and P. B. Wiegmann, Annals of

Physics 362, 752 (2015).
[10] T. Can, M. Laskin, and P. Wiegmann, Phys. Rev. Lett.

113, 046803 (2014).
[11] M. Laskin, T. Can, and P. Wiegmann, Physical Review

B 92, 235141 (2015).
[12] B. Bradlyn and N. Read, Phys. Rev. B 91, 125303 (2015).
[13] B. Bradlyn and N. Read, Phys. Rev. B 91, 165306 (2015).
[14] G. Y. Cho, Y. You, and E. Fradkin, Phys. Rev. B 90,

115139 (2014).
[15] D. T. Son, arXiv:1306.0638 (2013).
[16] A. Cappelli and E. Randellini, Journal of High Energy

Physics 3 (2016).
[17] N. Schine, A. Ryou, A. Gromov, A. Sommer, and J. Si-

mon, Nature (2016).
[18] J. E. Avron, R. Seiler, and P. G. Zograf, Phys Rev Lett

75, 697 (1995).
[19] N. Read, Phys Rev B 79, 045308 (2009).
[20] N. Read and E. H. Rezayi, Phys Rev B 84, 085316 (2011).
[21] F. D. M. Haldane, Phys. Rev. Lett. 51, 605 (1983).
[22] J. E. Avron, J Stat Phys 92, 543 (1998).
[23] J. Xia, J. Eisenstein, L. N. Pfeiffer, and K. W. West,

Nature Physics 7, 845 (2011).
[24] Y. Liu, S. Hasdemir, M. Shayegan, L. Pfeiffer, K. West,

and K. Baldwin, Physical Review B 88, 035307 (2013).
[25] B. E. Feldman, M. T. Randeria, A. Gyenis, F. Wu, H. Ji,

R. J. Cava, A. H. MacDonald, and A. Yazdani, Science
354, 316 (2016).

[26] N. Samkharadze, K. Schreiber, G. Gardner, M. Man-
fra, E. Fradkin, and G. Csáthy, Nature Physics 12, 191
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