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Non-Fermi liquids are metals that cannot be adiabatically deformed into free fermion states.
We argue for the existence of “non-Fermi glasses,” phases of interacting disordered fermions that
are fully many-body localized (MBL), yet cannot be deformed into an Anderson insulator without
an eigenstate phase transition. We explore the properties of such non-Fermi glasses, focusing on a
specific solvable example. At high temperature, non-Fermi glasses have qualitatively similar spectral
features to Anderson insulators. We identify a diagnostic, based on ratios of correlators, that sharply
distinguishes between the two phases even at infinite temperature. Our results and diagnostic should
generically apply to the high-temperature behavior of MBL descendants of fractionalized phases.

Adiabatic continuity, exemplified by the Fermi liquid,
is a central theme in many-body physics [1]. The in-
teractions in Fermi liquids only “dress” the elementary
excitations, which retain the character of the microscopic
fermions; the quasiparticle residue Z, which measures the
overlap between the quasiparticle and bare fermion cre-
ation operators, remains finite, and the (bare) electron
spectral function—measured by tunneling experiments—
exhibits dispersing quasiparticle modes. In strongly cor-
related systems, however, the Fermi liquid picture can
break down, as Z → 0 at a quantum phase transition to
a “non-Fermi liquid” phase. Non-Fermi liquid phases of-
ten exhibit fractionalization: their elementary excitations
have distinct quantum numbers from the bare fermions.
For instance, an electron can fractionalize into elemen-
tary collective excitations that carry spin and charge,
and have different velocities. The single-electron spectral
function will then not exhibit sharply dispersing modes,
but rather an incoherent, multi-particle continuum; we
take the consequent absence of a quasiparticle residue
to be the key property of a “fractionalized” phase, and
our results pertain generally to such phases. Despite this
sharp distinction in single-particle properties, however,
thermodynamics and transport might be insensitive to
the distinction between Fermi liquids and non-Fermi liq-
uids, as in the “orthogonal metal” [2].

In clean systems such as Fermi liquids, adiabatic con-
tinuity only applies to elementary excitations above the
ground state (states with zero energy density). However,
strongly disordered systems in the many-body localized
(MBL) phase can exhibit adiabatic continuity in the en-
tire spectrum [3, 4]. In particular, a typical many-body
eigenstate of an MBL system can be regarded (almost ev-
erywhere [5]) as a product state (or Slater determinant)
of localized orbitals, perturbatively dressed by interac-
tions [6, 7], much as the Fermi liquid is a dressed ver-
sion of a Fermi gas — an apt name might be a “Fermi
glass” [8, 9]. This leads us to ask: do there exist fraction-
alized, “non-Fermi glass” MBL phases, which cannot be

regarded as perturbatively dressed Slater determinants;
and if so, what are their properties?

In this work, we embark on the study of non-Fermi
glasses by exploring the fate of the “orthogonal metal” [2]
in the presence of strong quenched disorder. We term
the resulting phase the orthogonal many-body localized
(oMBL) insulator. Although the oMBL insulator has
the same transport and thermodynamic properties as the
Fermi glass, or conventional MBL (cMBL) insulator, the
two phases are separated by an eigenstate phase transi-
tion [10, 11]. The usual spectral signatures of fractional-
ization are absent in this strongly disordered limit. Since
both the oMBL and cMBL phases are localized, the local
single-particle spectral function in both phases is domi-
nated by sharp peaks. These are related to localized in-
tegrals of motion (LIOMs) [6], which can be accessed by
electron tunneling in both phases. The spatially averaged
spectral functions retain a sharp distinction at zero tem-
perature, featuring a soft gap in the oMBL phase but
not in the cMBL phase; however, at nonzero tempera-
tures this soft gap is filled in. Thus the eigenstate phase
transition between oMBL and cMBL phases is spectrally
“hidden”. Nonetheless, the two phases are distinct even
at infinite temperature; this distinction is hidden in the
structure of spatial correlations. We identify a specific
ratio of correlation functions (namely, that of the single-
particle propagator to the pair propagator) that sharply
distinguishes them, and argue that such ratios generically
diagnose fractionalization in the MBL setting.

Disordered orthogonal metals.—We first schematically
review the construction of the orthogonal metal [2], of
spinless electrons. The electron operator at site i, ci, is
written as the product of a fermion operator fi and a
Pauli matrix σxi acting on an auxiliary subspace. This
doubling of degrees of freedom on each site is associated
with a Z2 gauge redundancy [12]. Thus, the original
theory (with only ‘physical’ c fermions) can be recast
as a theory of f fermions and σ spins (here, subject
to a transverse-field Ising-model (TFIM) Hamiltonian,
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ing Z2 gauge field. This has two possible T → 0 phases.
When the Z2 gauge theory is confining or the TFIM is or-
dered, the propagating degrees of freedom are c fermions,
and we have a conventional metal. However, when the
Z2 gauge theory is deconfined and the TFIM is in its
paramagnetic phase, the c fermion is fractionalized into
separately propagating f and σ degrees of freedom: the
orthogonal metal. In spatial dimension d > 1, where Z2

gauge theory has both confined and deconfined phases,
both orthogonal and conventional metals are possible.

This phase structure readily generalizes to excited
eigenstate properties in the presence of strong random-
ness. In two dimensions, pure Z2 gauge theory with
random couplings is related by duality to a random
transverse-field Ising model (RTFIM). For strong ran-
domness, the gauge theory has confined and deconfined
“eigenstate phases” that survive the inclusion of localized
dynamical matter [10]. The oMBL phase then exists in
the regime where (1) the gauge theory is in its deconfined,
localized eigenstate phase, (2) the σ spins are in the lo-
calized paramagnetic phase, and (3) the f fermions are
localized. In this regime, the “matter” degrees of free-
dom (fs and σs) are weakly coupled to the gauge sector,
which can therefore be neglected. At high temperatures
any of the three sectors could also be in a thermal phase;
if so, it will infect the others [14]. To avoid this, we fo-
cus on the strong randomness limit where all sectors are
localized. We develop our argument by first construct-
ing and studying a d = 1 exactly solvable toy model of
the orthogonal Anderson (non-interacting) insulator. We
then argue that our results generalize to interacting sys-
tems and to d > 1. When the gauge field is deconfined,
we can regard f and σ as separately propagating degrees
of freedom, and the c fermion as a composite of them,
with the proviso that only gauge-neutral quantities (i.e.,
c fermions) are measurable. Since 1D gauge theories al-
ways confine we must impose this on our toy model since,
strictly speaking, it cannot emerge via fractionalization.
However, our analysis of spectral and correlation proper-
ties is symmetry-based and thus quite general.

Exactly Solvable Model.— Our d = 1 exactly solvable
model (introduced, absent disorder, in [2]) consists of
fermions (ci) and Ising spins (σi), with Hamiltonian

Hes =
∑

i
Jiσ

x
i σ

x
i+1 + hiσ

z
i (−1)c

†
i ci

−ti(c†iσxi σxi+1ci+1 + h.c.) + µic
†
i ci (1)

where Ji, hi, ti, and µi are random variables. We now

rewrite (1) in terms of τzi ≡ σzi (−1)f
†
i fi , τxi = σxi , fi ≡

τxi ci: the two sectors decouple, Hes = Hf +Hτ , with
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†
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x
i τ
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and each can be separately solved. The f fermions form

an Anderson insulator regardless of the disorder strength
(since we are in one dimension). Meanwhile the τ spins
are described by a RTFIM whose eigenstates can be ei-
ther in a magnetically ordered (“paired” or “spin glass”)
phase [10, 15, 16], when h� J , or a magnetically disor-
dered (“paramagnetic”) phase, when h � J . (Here h, J
characterize the strength of randomness in hi, Ji.) We ar-
gue that these limits correspond to the conventional and
orthogonal Anderson-localized phases, respectively, and
on perturbing away from exact solvability, lead to cMBL
and oMBL phases. We note that, as outlined in [2], the
complex f fermions carry all the electric charge; thus,
the transport properties are independent of the phase of
the τ spins. In the T →∞ limit that is our main focus,
all eigenstates are equiprobable and hence the thermo-
dynamics in the two phases is identical (and trivial).

Spectral Functions.— In the clean case, a sharp diag-
nostic of the orthogonal metal is the behavior of its single-
particle spectral function. As discussed in the introduc-
tion, the conventional metal has sharp peaks correspond-
ing to quasiparticle excitations, whereas the orthogonal
metal has an incoherent two-particle continuum, reflect-
ing the fractionalization of the c fermions. This diag-
nostic evidently fails in the localized phase, because any
local spectral function is dominated by a finite number
(set by the localization length ξ) of sharp peaks.

A second possibility is that the spatially averaged spec-
tral function retains a distinction between the two phases;
as we shall see, this is true in the disordered system at
T = 0 but not at T > 0. Recall that the spectral func-
tion of an operatorO is given by AO(ω) = − 1

π ImGret
O (ω),

where Gret
O (t) ≡ −iΘ(t)Tr ρ(β)

[
O(t),O†(0)

]
± is the re-

tarded Green’s function of O and we choose a commuta-
tor (anticommutator) ifO is bosonic (fermionic). The use
of a density matrix ρ in this expression deserves comment
in the context of MBL, where systems are usually consid-
ered in isolation. We imagine first coupling the system
to a bath at temperature T with strength g, and taking
g → 0 slowly so that the system remains in equilibrium
with the bath [17]; then we may write ρ = Z−1e−H/T ,
where Z is the partition function. In general, we have [18]

AO(ω) =
1± e−βω
Z

∑
m,n

|〈m| O |n〉|2 e−βEmδ(ω − Emn)(3)

where β = 1/T is the inverse temperature, m,n label
many-body eigenstates, Emn ≡ En − Em, and we take
the negative (positive) sign for bosonic (fermionic) O. At
the solvable point, we may express eigenstates of Hes as
tensor products of eigenstates of Hτ , Hf , and decompose
the energies, viz. |m〉 = |mτ 〉 ⊗ |mf 〉, Em = Eτmτ +Efmf .
Using this, the c fermion spectral function is

Acj (ω) =
1 + e−βω

Z
∑

mτ ,mf ,
nτ ,nf

|〈mf | fj |nf 〉|2 e−βE
f
mf (4)

×
∣∣〈mτ | τxj |nτ 〉

∣∣2 e−βEτmτ δ(ω − Efmfnf − Eτmτnτ ).
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This can also be derived by expressing Ac in terms of f
and τ spectral functions [18].

Ground-State Spectral Functions.— The T = 0 spec-
tral function only involves excitations about the ground
state in each sector; as these must have positive energy,
for ω → 0 only a limited set of transitions from each
sector contribute to the spectral response (Fig. 1(a)). In
this limit, is convenient to rewrite (4) as a convolution of
T = 0 spectral functions of f and τ [18],

A0
cj (ω) =

∫ ω

0

dΩA0
fj (Ω)A0

τxj
(ω − Ω), (5)

where A0
fj

(ω) =
∑
nf
|〈0f | fj |nf 〉|2 δ(ω−Efnf ), A0

τxj
(ω) =∑

nτ

∣∣〈0τ | τxj |nτ 〉∣∣2 δ(ω − Eτnτ ).
Let us consider the f spectral function first, as its

behavior is the same in both phases. Since the initial
and final states |0f 〉, |nf 〉 lie in distinct fermion-parity
sectors, they do not experience mutual level repulsion,
and so the energy Efnf can be arbitrarily small (i.e., the
tunneling density of states of an Anderson insulator is
smooth and nonzero at the Fermi energy). Therefore,

A0
fj

(ω)
ω→0≈ νf > 0, where the bar denotes both spatial

and disorder-averaging.
We next consider the τ sector. In the spin glass phase,

τxj has a non-vanishing ground-state expectation value,
〈0τ | τxj |0τ 〉 = mx

j 6= 0 leading to an ω = 0 contribution
to the τ spectral function. This vanishes in the para-
magnetic phase. In addition, there are off-diagonal (i.e.,
finite-frequency) contributions to the τ spectral function.
These go as continuously varying power laws [19, 20],

Aτxj (ω)
ω→0≈ m2

xδ(ω) +K(ω/ω0)γ−1, where m2
x = (mx

j )2;
K is a constant; and γ ≥ 0. In the exactly solvable
model, γ → 0 at the RTFIM transition. Using (5),

A0
cj (ω)

ω→0≈ νf
{
m2
x + ντ (ω/ω0)γ

}
. (6)

For h � J the τs order ferromagnetically, mx 6= 0 and
there is a nonzero ω → 0 spectral response A0

cj (ω) ∼
const., corresponding to the conventional Anderson insu-
lator. In the paramagnetic phase of the τs for h � J ,
mx = 0 and there is a ‘soft gap’ to single-c-fermion tun-
neling: A0

cj (ω) ∼ ωγ . This corresponds to the orthogonal
Anderson insulator. The low-frequency T = 0 spectral
response is thus sharply distinct in the two phases.

Spectral Functions for T > 0.— Crucial to the T = 0
spectral distinction between the cMBL and oMBL phases
is that in order to tunnel a c fermion, we must simul-
taneously tunnel an f fermion and create a spin exci-
tation, both of which require a positive energy in the
ground state. This, coupled with the fact that the off-
diagonal spin response vanishes as ω → 0, generates a
soft tunneling gap in the oMBL phase. For T > 0, how-
ever, Ac(ω) receives contributions from all initial states
rather than just the ground state; therefore, a low-energy
process for the c fermions can be built by offsetting a
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FIG. 1. Processes contributing to Ac(ω). (a) At T = 0,
only excitations about the ground state of f and τ sectors
contribute, restricting the phase space as each has E > 0. (b)
As T → ∞, arbitrary low-energy c-tunneling processes can be
put ‘on shell’ by trading energy between sectors.

large positive energy difference in the f sector by a large
negative energy difference in the τ sector, or vice versa
(Fig. 1(b)) [21]. In other words, at finite energy density
the low-frequency response of the cs is generically built
from high frequency responses of fs and τs, and therefore
the phase-space restrictions that lead to the distinct tun-
neling behavior in the oMBL and cMBL phases are ab-
sent. Formally, this can be seen directly from the T →∞
limit of (4): all Boltzmann factors equal the identity, and
sums range over all states in each sector.

A sharp spectral distinction is absent not just at T =
∞ but generically at all T > 0. However, for tempera-
tures much lower than the characteristic τ sector energy
scales, a crossover persists in Ac(ω). When the τs are
paramagnetic, the c spectral function remains depleted
at low frequencies, since only excitations with energies
less than T are appreciably populated in equilibrium and
can thus undergo “downhill” transitions. We therefore
expect that, in the oMBL phase, Ac(T, ω → 0) ∼ T γ .

Diagnostic at T = ∞.— How can we distinguish be-
tween the orthogonal and conventional MBL phases for
T → ∞? Recall that we are ultimately interested in
systems where the τ spins are not physically observable,
microscopic degrees of freedom to which one can couple
directly; we must therefore build our desired diagnostic
entirely out of c fermions. Although the spatial corre-
lations of τx exhibit spin glass order in one phase and
decay exponentially in the other, one can only measure
products of τ and f correlators. The f correlators decay
exponentially in both phases, since the f fermions are
always localized; therefore the c correlators also decay
exponentially in both phases. This overall exponential
suppression masks the change from long-range behavior
to exponential decay in the τ sector.

We consider instead a ratio of correlators, each com-
puted at T =∞ (i.e. via equal-weight eigenstate sums):

Q(r) =

(∑
i,m

∣∣∣〈m| c†i ci+r |m〉∣∣∣2)2

∑
i,m

∣∣∣〈m| c†i c†i+1ci+rci+r+1 |m〉
∣∣∣2 . (7)
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FIG. 2. Operator pairings in Eq. (7). Here, f†,f are denoted
by black (grey) filled circles, and τx by a red unfilled circle.
The numerator involves pairing (a), whereas the denomina-
tor is dominated (in the τ -paramagnet) by pairings of the
form (b), and contains long-distance f -contractions. In the τ
spin glass, τx has a classical expectation value (the spin-glass
order parameter) so at leading order 〈τxi τxj 〉 factorizes.

The numerator of (7) is sensitive to localization in both
the f and τ sectors; in the spin-glass phase it decays with
the f -sector localization length (since the τ spins have
spin-glass order), whereas in the paramagnet it decays
with a localization length ξc ' (1/ξf + 1/ξτ )−1. The
denominator, on the other hand, decays with the f -sector
localization length in both phases: in the paramagnet, τ
spins (related, via a Jordan-Wigner transformation, to
real fermions) can be paired locally, but owing to charge
conservation the complex f fermions can only be paired
up as in Fig. 2(b). Thus, the diagnostic (7) asymptotes
to a constant value as r → ∞ in the spin-glass phase of
the τs, but decays exponentially in the paramagnet.

Because squaring precedes thermal averaging in
Eq. (7), neither the numerator nor the denominator of
Q(r) is an equal-time correlator. Rather, they are ω → 0
limits of spectral functions; unlike equal-time correlators,
ω → 0 spectral functions remain sensitive to dynam-
ics. Q is experimentally accessible: its numerator is the
square of the ω → 0 limit of the spectral function of
the operator c†i cj that captures two-point correlations in
tunneling; its denominator is the ω → 0 limit of the anal-
ogous Cooper pair correlator Oij = c†i c

†
i+1cj+1cj , which

is related to the Josephson response. In the oMBL phase
at T =∞ fermionic pairs are more weakly localized than
single fermions; this is a high-temperature manifestation
of the relation between pairing and the orthogonal metal
noted in [2]. Such “factoring out” of pieces of correla-
tors to tease out hidden asymptotics is reminiscent of the
diagnostics in [22], although the physics here is distinct.

Extensions and Discussion.—Having explored a simple
solvable example of an orthogonal Anderson insulator,
we now generalize our results. First, we argue that the
orthogonal Anderson insulator extends into a bona fide
oMBL phase. This is so, since perturbations of the solv-
able point that lead to short-range interactions in the de-
coupled theories do not destroy the localized phase of the
f fermions nor disrupt the phase structure of the RTFIM.
Hence, the two insulators have sharply distinct eigen-
states even with such perturbations, and must be sepa-
rated either by an eigenstate phase transition or an in-
termediate thermal phase. Though we disorder-averaged
independently for f and τ and this is no longer exact

away from the solvable point, local interactions within
either sector are innocuous [16, 23], as they merely turn
either noninteracting insulator into an MBL insulator.
However, interactions will also introduce correlations be-
tween the disorder in the two sectors. The two distinct
phases of the solvable model remain distinct in the pres-
ence of these disorder correlations, which preserve the
Ising symmetry of the τ sector as well as the U(1) sym-
metry of the charge sector. The presence (absence) of a
soft gap in the zero-temperature c fermion spectral func-
tion in the oMBL (cMBL) phase is due to the presence
(absence) of Z2 eigenstate order, and thus persists in the
interacting case. Further, the diagnostic (7) is robust
to interactions. Both Fig. 2(a,b) will then involve terms
with many c and c† operators. However, the number of
long-distance pairings is determined by the imbalance be-
tween c†s and cs. Interactions do not change this, as long
as U(1) symmetry is preserved.

A second issue is that the toy model is 1D, yet the
orthogonal phase is more natural in d > 1 where the
gauge field can be deconfined. Exactly solvable, fine-
tuned models of orthogonal Anderson insulators can be
constructed in d > 1, but whether a robust MBL phase
exists in d > 1 remains an open question due to the role
of rare regions [24, 25]. Even if strict MBL is absent,
the cMBL and oMBL phases will persist as long-lived
prethermal regimes [26, 27]. Autocorrelators at inter-
mediate times will be governed by MBL dynamics, but
will cross over to thermal behavior in the d.c. limit. As
defined, our diagnostic (7) will behave thermally. How-
ever, instead of taking the d.c. limit, we could consider
the same ratio of spectral functions at low nonzero fre-
quency; it will be small (large) in the oMBL (cMBL)
phase, with a sharp crossover between the two behaviors.
This crossover should also occur in imperfectly isolated
systems [17].

Our conclusions generalize from the oMBL phase to
other “fractionalized” MBL phases, whose integrals of
motion are orthogonal to the physical fermion/spin op-
erators. For spectral functions, this generalization is di-
rect. Diagnostics analogous to (7) can be constructed for
any fractionalized MBL phase whose physical particles
have a conserved U(1) charge, carried by some (but not
all) of the “partons.” The physical fermion carries charge
as well as other quantum numbers; however, composite
local operators carry only charge, and generalize the de-
nominator in (7). It is tempting to speculate on the role
of many-body mobility edges in this setting; all sectors
presumably share a common mobility edge, since other-
wise one will thermalize the rest. We defer this question
to future work.

Acknowledgments.— We thank R. Nandkishore,
M. Serbyn, S.L. Sondhi and R. Vasseur for helpful discus-
sions, and E. Altman, J.T. Chalker and A.C. Potter for
discussions and for comments on the manuscript. We ac-
knowledge the hospitality of Trinity College, Cambridge,



5

where part of this work was completed. S.A.P. acknowl-
edges support from NSF Grant DMR-1455366 and a UC
President’s Research Catalyst Award CA-15-327861, and
S.G. from the Burke Institute at Caltech.

∗ Present Address: Rudolf Peierls Centre for Theoretical
Physics, 1 Keble Road, Oxford OX1 3NP, UK.

[1] P.W. Anderson, Basic Notions Of Condensed Matter
Physics, Advanced Books Classics Series (Westview
Press, 2008).

[2] R. Nandkishore, M. A. Metlitski, and T. Senthil, Phys.
Rev. B 86, 045128 (2012).

[3] D. Basko, I. Aleiner, and B. Altshuler, Annals of Physics
321, 1126 (2006).

[4] R. Nandkishore and D. A. Huse, Annual Review of Con-
densed Matter Physics 6, 15 (2015).

[5] J. Z. Imbrie, Journal of Statistical Physics 163, 998
(2016).

[6] D. A. Huse, R. Nandkishore, and V. Oganesyan, Phys.
Rev. B 90, 174202 (2014).

[7] S. Bera, H. Schomerus, F. Heidrich-Meisner, and J. H.
Bardarson, Phys. Rev. Lett. 115, 046603 (2015).

[8] P.W. Anderson, Comments on Solid State Physics 2, 193
(1970).

[9] R. Freedman and J. A. Hertz, Phys. Rev. B 15, 2384
(1977).

[10] D. A. Huse, R. Nandkishore, V. Oganesyan, A. Pal, and
S. L. Sondhi, Phys. Rev. B 88, 014206 (2013).

[11] B. Bauer and C. Nayak, Journal of Statistical Mechanics:
Theory and Experiment 2013, P09005 (2013).

[12] X.-G. Wen, Quantum field theory of many-body systems
(Oxford University Press on Demand, 2004).

[13] We neglect for now the question of whether MBL in d = 2
is destroyed by rare-region effects. Even if this is so, the
phenomena we discuss will be visible as sharp crossovers.

[14] S. A. Parameswaran and S. Gopalakrishnan, Phys. Rev.
B 95, 024201 (2017).

[15] J. A. Kjäll, J. H. Bardarson, and F. Pollmann, Phys.
Rev. Lett. 113, 107204 (2014).

[16] D. Pekker, G. Refael, E. Altman, E. Demler, and
V. Oganesyan, Phys. Rev. X 4, 011052 (2014).

[17] R. Nandkishore, S. Gopalakrishnan, and D. A. Huse,
Phys. Rev. B 90, 064203 (2014).

[18] See supplementary material for details of spectral func-
tion calculations and dualities.

[19] D. S. Fisher, Phys. Rev. Lett. 69, 534 (1992).
[20] D. S. Fisher, Phys. Rev. B 50, 3799 (1994).
[21] S. Gopalakrishnan, M. Müller, V. Khemani, M. Knap,

E. Demler, and D. A. Huse, Phys. Rev. B 92, 104202
(2015).

[22] K. Gregor, D. A. Huse, R. Moessner, and S. L. Sondhi,
New Journal of Physics 13, 025009 (2011).

[23] R. Vasseur, A. C. Potter, and S. A. Parameswaran, Phys.
Rev. Lett. 114, 217201 (2015).

[24] W. De Roeck and F. m. c. Huveneers, Phys. Rev. B 95,
155129 (2017).

[25] D. J. Luitz, F. Huveneers, and W. De Roeck, arXiv
preprint arXiv:1705.10807 (2017).

[26] J.-y. Choi, S. Hild, J. Zeiher, P. Schauß, A. Rubio-
Abadal, T. Yefsah, V. Khemani, D. A. Huse, I. Bloch,

and C. Gross, Science 352, 1547 (2016).
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