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The relationship between the microstructure of a porous medium and the observed flow distribu-
tion is still a puzzle. We resolve it with an analytical model, where the local correlations between
adjacent pores, which determine the distribution of flows propagated from one pore downstream,
predict the flow distribution. Numerical simulations of a two dimensional porous medium verify the
model and clearly show the transition of flow distributions from δ-function-like via Gaussians to ex-
ponential with increasing disorder. Comparison to experimental data further verifies our numerical
approach.

PACS numbers: 47.56.+r, 02.50.Ey, 47.15.G-, 81.05.Rm

Fluid flow through a porous medium is an impor-
tant problem for many technological applications rang-
ing from oil recovery to chemical reactors [1–4]. Flows
are characterized by heterogeneous flow patterns, arising
due to complexity on pore network scale [5–7] as well
as pore-scale [8, 9]. Large scale flow dynamics such as
permeability and flow dispersion are well modeled based
on medium-wide measures like pore size distribution and
local conductance [10–13]. Thus, flow characteristics on
scales much larger than a pore size are well understood,
however, there has been significant controversy about the
flow distributions on the scale of individual pores [14–
31]. The observed flow velocity distributions range from
Gaussian [20, 26], to lognormal [15, 25, 27] to exponential
[17–23, 31, 32]. There is little understanding of why these
different distributions are observed, or what causes a par-
ticular distribution to occur in a given situation. Cur-
rent models predict the flow velocity distribution from
the pore size distribution [18, 21], describing the porous
medium by a bundle of parallel capillaries with the given
pore sizes [33]. The flow velocity distribution then follows
directly from the pore size distribution. While this simple
mapping predicts an exponential flow velocity distribu-
tion for a Gaussian pore size distribution, it often fails to
account for other distributions. For example it has been
observed that two different porous media with very sim-
ilar Gaussian-like pore size distributions have very dif-
ferent flow velocity distributions namely Gaussian and
exponential [20].

In this Letter we present a model that explains why
different flow distributions occur in different situations.
The essential ingredient of our model is not the pore size
distribution itself but instead local correlations between
adjacent pores; these determine the distribution of frac-
tions of fluid flow propagated from one pore to others that
are downstream. We show that when there is sufficient
disorder at the pore scale, these flow rates are partitioned
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FIG. 1. Example of exponential distribution of flow velocities
faithfully modeled as flow through a network of tubes with
varying radii. (a) Map of measured absolute flow velocities in
two dimensional pore space (scale bar 500µm). Solid phase
overlayed in white is a reprint of a slice through a three di-
mensional pore space. (b) Numerically predicted Poiseuille
flow profile based on network of tubes of varying radius. (c)
Exponential distribution of flow velocities u normalized by the
Darcy flow velocity uD of maps shown in (a) and (b). Note
that there is no adjustable parameter. (d) Illustration of how
pore space is mapped to network of tubes (cool colors) with
varying tube radius (hot colors).

randomly. Analytical arguments based on the so called q
model, originally proposed to describe force propagation
in bead packs [34, 35], then imply that the flow distri-
bution is exponential. We verify these conclusions us-
ing numerical simulations of low Reynolds number fluid
flow through a two dimensional model porous medium,
formed of circular or elliptical discs placed on a square
or triangular lattice with increasing disorder. The simu-
lations quantitatively reproduce flow distributions from
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experiments of a two dimensional porous medium, and
clearly show a transition of two δ-function like distribu-
tions to Gaussians to an exponential distribution of flows
with increasing disorder in the ordering of the discs. We
find that pore size distributions are a bad predictor of
flow distributions in contrast to the distributions of frac-
tion of propagated fluid flow.

We begin by presenting numerical simulations of fluid
flow in a two dimensional porous medium. To do this,
we reduce the full pore space to a network of connected
tubes, where each tube’s diameter narrows and widens
according to the existing pore space. The flow within
each tube of rectangular cross-section is calculated by
solving for Kirchoff’s circuit law for two dimensional
Poiseuille flow within the tubes of varying diameter. This
model is an approximation of the full two dimensional
Stokes flow representing the low Reynolds number flow
within the porous medium. To verify that flow through
a porous medium can be modeled as flow through a
network of tubes we compare the predictions from the
model to experimental measurements of flow velocities
in a two dimensional porous medium. For the experi-
mental data of a two dimensional micromodel of porous
media we chose a pattern obtained from the optical slices
in a three dimensional, loose packing of glass beads with
a confocal microscope [36] as well as numerically gener-
ated patterns. The two dimensional micromodel is an
array of pillars with average diameter of 300 µm and
height of 120 µm. We use standard soft lithography
technique [37] to fabricate the micromodel in PDMS,
poly(dimethylsiloxane). The fluid, a mixture of 84 w%
Glycerol and water is seeded with 1 µm latex fluores-
cent tracer particles at 0.006 volume%. We use particle
image velocimetry [15, 31] for measuring the flow veloc-
ities. The magnitude of the velocities is measured at a
volumetric flow rate of 9 µL/hr. Using these parameters,
and the geometry of the porous medium, we numerically
predict the resulting distribution of flow velocities. The
overall pattern of predicted flow velocities is very similar
to the experimentally observed, as shown by the two pan-
els in Fig. 1. Slight deviations arise, since the underlying
porous medium pattern used in the model has artifacts
arising from the stitching of microscope images. Also
very small velocities are not well resolved since the fluo-
rescent tracers do not enter regions of vanishingly small
flow. Despite these deviations the histogram of measured
flows quantitatively compares well with those predicted,
see Fig. 1. Note, that there is no adjustable parameter.

Now that we established the reduction of a porous
medium to a network of tubes, we turn to explore numer-
ically generated porous media of varying disorder. Discs
of diameter D = 120px, px short for pixels, are placed
on the grid points (x, y) of a square grid allowing for
some disorder of magnitude σD along both x and y di-
rection. We choose the porosity in the rectangular space
of 1200px×4800px to be φ = 0.5. We expect the network
of tubes model to break down at very high porosities with
pore spaces much larger than obstacle size but to hold at

upstream

downstream

FIG. 2. Example of normalized flows Q/mean(Q) (black) and
fractions of propagated flows ω (red). At a node point flows
from incoming tubes slit up in fractions, for example ω =
{1.0, 0.0} or ω = {0.47, 0.52}, top left and right, respectively.
Kirchhoff’s law ensures that fractions sum up to one. Flow
in a tube downstream sums up flow contributions from tubes
upstream, for example 2.2 = 1× 1.3 + 1× 0.9, bottom left.

least for porosities up to the porosity φ = 0.6 of our
benchmark comparison shown in Fig. 1. In simulations
the resulting pore space is skeletonized into a network of
tubes of varying diameter, with periodic boundary condi-
tions along the short axis. Tube diameters at each point
along the tube’s skeleton are determined as the minimal
distance of each point to the porous media. Each tube is
oriented toward its node closest to the outflow along x.
Flow orientation is determined by being parallel, positive
sign, or anti-parallel, negative sign, to a tube’s orienta-
tion. Due to this definition negative flow rates arise that
are a mere artifact of the orientation of tubes in Cartesian
coordinate system but do not indicate back flows. The
flow rates Q at every pixel along the pore space network
are tabulated to give the probability distribution function
(PDF) of the flow rates for a given pore space geometry,
see Fig. 3. Similarly the fraction of flow ω propagated
from one tube onward to its neighboring tubes at every
network node is measured.

At low disorder σ = 0.01, when the pore space
forms a square grid the flow distribution displays two
δ-distributions, one at zero for all pore tubes perpendic-
ular to the pressure drop, and one at the normalized flow
Q/mean(Q) = 2 corresponding to the uniform flow in
the pores parallel to the pressure drop. Upon increasing
the disorder to σ = 0.1 the two δ-functions broaden out,
with the one previously centered at zero remaining more
peaked than the other. Already at a disorder amplitude
of half a radius, σ = 0.5, the probability distribution of
the flow rates is exponential and remains so for higher
disorder. In our simulations, the observed stretched ex-
ponential distribution of flux rates as defined in Ref. [26]
is equivalent to an exponential distribution of flow rates.
We observe the same transition from δ- via Gaussian
to exponential distribution with increasing disorder in
experimentally measured flow rates through porous me-
dia with patterns drawn from our numerical simulation.
The transition is also robust against variation in obsta-
cle shape or underlying grid topology, as long as no ad-
ditional disorder is introduced that would expedite the
transition, see supplemental material [38]. Why should
we expect an exponential distribution of flow rates and



3

−2 −1 0 1 2 3 4 5−0.5 0 0.5 1 1.5 2 2.50 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

(a) (b) (c)

−4 −2 0 2 4 6 8
10−5

10−4

10−3

10−2

10−1

100

Q/mean(Q)

PD
F(

Q
/m

ea
n(

Q
))

-4 -2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

0.3

-4 -2 0 2 4 6 8
Q/mean(Q)

0

0.05

0.1

0.15

0.2

0.25

0.3

PD
F(

Q
/m

ea
n(

Q
))

-4 -2 0 2 4 6 8
Q/mean(Q)

0

0.05

0.1

0.15

0.2

0.25

0.3

PD
F(

Q
/m

ea
n(

Q
))

simulation
experiment
sim. average

simulation
experiment
sim. average

simulation
experiment
sim. average

Fraction
0 0.2 0.4 0.6 0.8 1

0

0.01

0.02

0.03

0.04

0.05

PD
F(

Fr
ac

tio
n)

0 0.2 0.4 0.6 0.8 1
Fraction

0

0.01

0.02

0.03

0.04

0.05
PD

F(
Fr

ac
tio

n)

0 0.2 0.4 0.6 0.8 1
Fraction

0

0.01

0.02

0.03

0.04

0.05

PD
F(

Fr
ac

tio
n)

FIG. 3. Flow statistics for increasing packing disorder. Snap shot of flow pattern (first row, note individual scale bars), flow
distribution (second row) and the distribution of the fraction of propagated flows (third row) for three different packings of
increasing disorder σ = 0.01 (a), σ = 0.1 (b), and σ = 0.5 (c). With the increase in disorder the two delta-like flow distributions
in the regular packing, spread out into Gaussians of unequal weight and eventually built up an exponential distribution.
This transition is accompanied with the fraction of propagated flow rates spreading out from zero and one and eventually
homogeneously populating fractions between the two limits. Comparison of experimentally measured flow rates (blue) of the
micromodels in (a), corresponding numerical solution (green), and averages of 20 independent numerical runs (red). Note,
that the optical measurement does not allow for good resolution of small velocities. Also, the production and imaging process
adds disorder broadening the flow distribution particularly at σ = 0.01 accounted for by the simulation results based on the
experimental micromodel pattern.

hence velocities? What characteristic of the pore space
determines the flow distribution? To answer these ques-
tions we turn to an analytical description of the local flow
dynamics.

Conservation of mass, in fluid dynamics stated as
Kirchhoff’s circuit law, governs the local dynamics of
flows at a node point within the pore space network: the
amount of flow into a node has to be equal to the amount
of flow flowing out of the node. Hence, the flow rate Qj
in a tube j is the sum of all contributing flows from all
N tubes connected to j upstream, each contributing a
fraction ωij of their total flow Qi to that tube, see Fig. 2,

Qj =

N∑
i=1

ωijQi. (1)

Kirchhoff’s law sets the sum over all fractions propa-
gated to obey

∑
i ωij = 1. Any set of flow fractions

denoted η(ω) is normalized
∫ 1

0
dω η(ω) = 1 and satisfies∫ 1

0
dω ω η(ω) = 1/N , since we consider a homogeneous

connectivity with N tubes connecting at a node point.
This normalization is applicable if non-contributing flows

are accounted for with a zero weight, see Fig. 2. This de-
scription of local flow propagation is very similar to how
a layer of beads supports the weight of the beads above
them in random bead packs [34, 35]. To solve for the
distribution of flow rates P (Q) given a distribution of
fractions η(ω) a mean field description analogous to the
bead pack model is formulated, see similar calculation
in [35]. The spatial velocity-velocity correlation has been
shown to decay exponentially with the distance. The cor-
relation decreases significantly with decreasing porosity
[26], supporting a mean field approximation to be valid
for low porosities. Thus, ignoring correlations of flow
rates in tubes upstream of tube j, Eq. 1 gives rise to a
recursive relation for the flow distribution function P (Q),

P (Qj) =

N∏
i=1

{∫ 1

0

dωij η(ωij)

∫ ∞
0

dQi P (Qi)

}

δ

(
N∑
i=1

ωijQi −Qj

)
. (2)

We normalize the flows in the pore space by their mean,
defining

∫∞
0
dQQP (Q) = 1.
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To understand the consequences of these formulae, it
is illustrative to explore the case of flows in a pore space
forming a square grid. Here, tubes along the pressure
gradient propagate their flow onward with a fraction of
1 to the next tube along the pressure gradient giving rise
to a δ-distribution at just that flow rate. Tubes perpen-
dicular to the flow do not receive any flow ωij = 0 from
their neighbors constituting a second δ-function in P (q)
at q = 0. The distribution of the fractions η(ω) is a
sum of two δ-functions at ωij = 0, 1. The key insight
is that the distribution of fractions fully defines the flow
distribution.

When we turn to the case of highest disorder consid-
ered in the simulation, σ = 0.5, see Fig. 3(c), we ob-
serve that in addition to two δ-function-like contribu-
tions at ωij = 0, 1 all fractions between these two limits
are equally populated at a roughly constant rate α, i.e.,

η(ω) = α+
1− α

2
δ(ω) +

1− α
2

δ(ω − 1), (3)

where the prefactors of the δ-functions ensure that nor-
malization and average mean value are satisfied. The
distribution of fractions is the superposition of two flow
patterns at the three-tube nodes. Either, there are two
inflows and one outflow, in which case flow fractions are
either 0 or 1 resulting in the two δ-functions, or there is
one inflow that splits up into two outflow. The fraction,
in which the inflow splits up is at high disorder random
and as such gives rise to a uniform distribution of frac-
tions.

The aim of the following deduction is to show that such
a distribution of fraction gives rise to an exponential flow
distribution. To this end we first take the Laplace trans-
form of the constituting equation for the flow distribution
Eq. 2, resulting in

P̃ (s) =

[∫ 1

0

dω η(ω)P̃ (ωs)

]N
. (4)

In the case of the disordered packing the topology of the
pore space network forms to over 99% nodes with two
incoming and one outgoing flows or vice versa, see [38].
We therefore restrict our calculation to the case of N = 2.
To simplify Eq. 4 we define Ṽ (s) = [P̃ (s)]1/2, multiply
the result by s and differentiate by s, yielding,

1 + α

2
Ṽ 2(s)− Ṽ (s) +

1− α
2

Ṽ (0) =[
1− (1− α)Ṽ (s)

]
s
dṼ (s)

ds
. (5)

We find that Ṽ (s) is a quickly decaying function, ap-

proaching Ṽ (s → ∞) = 1−α
1+α . We can analytically solve

this equation, initiating V (0) = 1, if we approximate the
prefactor in the bracket on the right hand side of Eq. 5

by [ (3−α)α1+α ]. This approximation is valid over large range
of s and α, yielding the closed expression

Ṽ =
(1− α)γs

1+α
3−α + 1

(1 + α)γs
1+α
3−α + 1

, (6)

where γ is numerically determined for specific values of
α. The inverse Laplace transform is analytically tractable
and results in an elaborate expression that is dominated
by an exponential decay,

P (Q) ∝ e−
(3−α)Q

γ(α+1)2 . (7)

Thus, we show that a combination of a singular and con-
tinuous distributions in flow fractions gives rise to an ex-
ponential decay generalizing results previously obtained
in a similar description of force distributions in random
bead packs [35].

At last we question how well the pore size distribu-
tion could predict flow distribution. We simulate flow
through a porous medium generated by discs on a square
lattice at medium positional disorder σ = 0.1 with op-
tional disorder in disc size of up to 20% disc diameter
[38]. We find almost identical pore size distributions for
without or with disorder in disc size yet entirely differ-
ent flow distributions, Gaussians versus close to exponen-
tial. A fact that is reflected very well in the correspond-
ing characteristic distribution of fractions of propagated
flow. Note that two Gaussians in the flow rate distribu-
tion translate to a single Gaussian in the flow velocity
distribution. This result explains previously puzzling ob-
servations where very similar pore size distributions cor-
respond to a Gaussian or an exponential flow distribu-
tion [20]. Close inspection of the positional correlations
of spherical obstacles in the previous work [20], reveal a
high degree of ordering in the sample with a Gaussian
flow velocity distribution in agreement with our findings.

To summarize, mapping a porous medium to a network
of tubes of varying diameter, we show that a mean field
description of the propagation of flows at node points
within this tube network successfully predicts the flow
distribution from the distribution of propagated flow
fractions. The flow fractions are determined by local
correlations of the pore sizes. This demonstrates that
instead of the overall pore size distribution, the local cor-
relation of pore sizes on the scale of the pore network sets
the flow distribution. Changing the local correlation of
pore sizes by gradually changing the disorder in the pack-
ing of discs transitions the flow distribution from double-
δ-function-like at low disorder via broadened Gaussians
to an exponential distribution already at a fairly moder-
ate disorder. While flow distribution properties such as
mean width or decay rate depend on network and obsta-
cle geometry and porosity [31, 32], distribution form and
transitions only depends on the amount disorder in the
local pore correlations and are independent of geometry.
Our analytical description is based on the flows within
the tubes of the pore network and therefore independent
of the precise dynamics of fluid flow within each tube,
i.e. two dimensional versus three dimensional Poiseuille
flow. Given the success of previous similar network of
tubes models [39] to describe flows through sandstone
are confident that also porous media in three dimensions
should be well described as a network of tubes at low
porosity. We therefore expect the general statement that
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local pore size correlations determine the flow distribu-
tion to carry over to three dimensional porous media.
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