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Laser linewidth is of central importance in spectroscopy, frequency metrology and all applications
of lasers requiring high coherence. It is also of fundamental importance, because the Schawlow-
Townes laser linewidth limit is of quantum origin. Recently, a theory of stimulated Brillouin laser
(SBL) linewidth has been reported. While the SBL linewidth formula exhibits power and optical
Q factor dependences that are identical to the Schawlow-Townes formula, a source of noise not
present in two-level lasers, phonon occupancy of the Brillouin mechanical mode, is predicted to
be the dominant SBL linewidth contribution. Moreover, the quantum-limit of the SBL linewidth
is predicted to be twice the Schawlow-Townes limit on account of phonon participation. To help
confirm this theory the SBL fundamental linewidth is measured at cryogenic temperatures in a
silica microresonator. Its temperature dependence and the SBL linewidth theory are combined to
predict the number of thermo-mechanical quanta at three temperatures. The result agrees with
the Bose-Einstein phonon occupancy of the microwave-rate Brillouin mode in support of the SBL
linewidth theory prediction.

Stimulated Brillouin Scattering (SBS) is a third-order
(χ3) optical nonlinearity that results from the interac-
tion between photons and acoustic phonons in a medium
[1–4]. SBS has practical importance in optical fiber
systems [5, 6] where it is an important signal impair-
ment mechanism in long-distance transmission systems
[7] and makes possible all-fiber lasers [8] as well as tun-
able, slow-light generation [9]. Power fluctuation result-
ing from thermal phonons has also been studied in fiber-
optic SBS Stokes wave generation [10], and the intensity
and phase noise have been measured in narrow-linewidth
Brillouin lasers[11]. More recently, the SBS process has
attracted considerable interest in micro and nanoscale de-
vices [12]. Brillouin laser action has been demonstrated
in several microcavity resonator systems including silica
[13–16], CaF2 [17] and silicon [18], and Brillouin am-
plification has been demonstrated in integrated chalco-
genide waveguides [19]. In silicon waveguides, the use of
confinement to enhance amplification has been studied
[20]. SBS is also a powerful tool for integrated photon-
ics signal processing [21–23], and it has been applied to
realize a chip-based optical gyroscope [24]. Moreover,
at radio-frequency rates, the SBS damping rate is low
enough in certain systems to enable cavity optomechani-
cal effects [25] including optomechanical cooling [26] and
optomechanical-induced transparency [27].

This work studies a recent prediction concerning the
fundamental linewidth (i.e., non technical noise contribu-
tion to linewidth) of the stimulated Brillouin laser (SBL).
The analysis of fundamental fluctuations in Brillouin de-
vices falls into a more general category of optomechan-
ical oscillators in which phonons participate in oscilla-
tion process [28, 29]. This participation creates a chan-
nel for fundamental sources of mechanical noise to couple
into the ocillator. For comparison, the SBL fundamen-
tal linewidth [15] and the conventional laser Schawlow-

Townes (ST) linewidth [30] in Hertz are given below,

∆νSBS =
~ω3

4πPQTQE

(nT +NT + 1), (1)

∆νST =
~ω3

4πPQTQE

(NT +
1

2
) (2)

where nT is the number of thermal quanta in the me-
chanical field at the Brillouin shift frequency, NT is the
number of thermal quanta in the laser mode (negligible at
optical frequencies and henceforth ignored), P is the laser
output power, QT (QE) is the total (external) Q-factor
(note: Q−1

T = Q−1

0
+ Q−1

E with Q0 the instrinsic Q), and
ω is the laser frequency. At very low temperatures where
nT is negligible, the quantum-limited SBL linewidth is
twice as large as the Schawlow-Townes linewidth on ac-
count of phonon participation in the laser process. At
finite temperatures nT is predicted to provide the dom-
inant contribution to the fundamental SBL linewidth.
SBL linewidth measurements at room temperature are
consistent with this prediction [15]. In this study, the
phonon contribution to eq. (1) is verified by determina-
tion of nT over a wide range of temperatures followed by
comparison to the Bose-Einstein phonon occupancy.

It is important to note that in addition to the funda-
mental phase noise (Eq. (1)) there is also an important
technical noise contribution to the Brillouin linewidth.
Specifically, because the Brillouin process is fundamen-
tally a parametric process, pump-phase-noise leaks into
the phase of the Stokes wave [11, 15, 29, 31]. This pump
noise is theoretically predicted and experimentally ob-
served to be strongly suppressed by the stronger damp-
ing of phonons relative the optical Stokes wave [11, 31],
but can nonetheless dominate the Brillouin linewidth if
the pump linewidths are large enough. In prior work, low
noise optical pumping has been shown to enable observa-
tion of the fundamental Brillouin noise in resonators like
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FIG. 1. Experimental setup and Brillouin laser action (a) Experimental setup showing external cavity diode laser
(ECDL) pump, erbium-doped fiber amplifier (EDFA), polarization control (PC) and circulator coupling to the cryostat. Green
lines indicate optical fiber. A fiber taper is used to couple to the microresonator. Pump and even-ordered stimulated Brillouin
laser (SBL) waves propagate in the forward direction while odd-ordered SBL waves propagate in the backward direction and
are coupled using the circulator. Photodetectors (PD) and an oscillopscope monitor the waves propagating in both directions.
A fast photodetector measures the 1st/ 3rd beatnote which is measured using an electrical spectrum analyzer (ESA) and phase
noise (L(f)) analyzer. An optical spectrum analyzer (OSA) also measures the backward propagating waves. The pump laser is
locked to the microresonator optical resonance using a Pound-Drever-Hall (PDH) feedback loop. (b) Schematic of the optical
fiber taper coupling setup inside the cryostat. Optical fiber (red) is glued to an aluminum holder which is fixed on a 3-axis
piezoelectric stage. The microresonator is mounted on a copper plate. (c) Top view of the 6 mm wedge disk resonator. (d)
Illustration of cascaded Brillouin laser action. Pump and even Stokes orders propagate in the forward direction while odd
orders propagate in the backward direction. Green curves represent the Brillouin gain spectra. Brillouin shift frequency (Ω)
and free-spectral-range (FSR) are indicated. (e) Optical spectrum measured using the OSA and showing cascaded Brillouin
laser action to 5th order. Inset: typical electrical beatnote spectrum produced by the 1st and 3rd order SBL signals.

those studied here [15, 22]. These pumping conditions
are used here to observe the fundamental noise.

Figure 1(a) shows the measurement setup. Pump
and signal light are conveyed using fiber optic cables.
After passing through an optical circulator, the pump
laser passes into the cryostat using a fiber vacuum
feedthrough. Inside the cryostat the pump laser power is
evanescently coupled to a silica disk microresonator us-
ing a fiber taper that is positioned piezoelectrically (Fig.
1(b)). Pumping power to the resonator as high as 20
mW was possible. The silica microresonator, shown in
Fig. 1(c), is a wedge design [14]. The cryostat is an
open-loop continuous-flow unit and was cooled to 77 K
using liquid nitrogen and to 8 K using liquid helium.

Brillouin laser action proceeds as diagrammed in Fig.

1(d) where cascaded lasing is illustrated. Pump light
coupled to a resonator mode induces Brillouin gain over
a narrow band of frequencies that are down-shifted by
the Brillouin shift frequency Ω/2π = 2nVs/λP where
Vs is the sound velocity, n is the refractive index and
λP is the pumping wavelength [15]. At room tempera-
ture in the silica devices tested here, the Brillouin-shift
frequency is 10.8 GHz for optical pumping near 1.55
µm. When the cavity free-spectral-range (FSR) approx-
imately equals Ω, stimulated Brillouin lasing is possible
creating a 1st-Stokes wave (FSR-Ω matching occurs for
resonator diameters near 6 mm in the silica devices tested
here). This Stokes wave propagates backward relative to
the pump wave on account of the Brillouin phase match-
ing condition, and emerges from the cryostat at the fiber
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input (Fig. 1(a)). With increasing pump power, the
1st-Stokes wave will grow in power and ultimately in-
duce laser action on a 2nd-Stokes wave, which, by phase
matching, propagates in the forward direction. Phase
matching ensures that odd (even) orders propagate back-
ward (forward), and follow fiber-optic paths in Fig. 1(a)
to measurement instruments. Figure 1(e) is a spectrum
of cascaded laser action to 5th order measured using the
OSA. Odd orders appear stronger than the even orders
(and the pump signal) because the OSA is arranged to
detect odd orders. Even-order detection occurs because
of weak back-scattering in the optical system.

The SBL cascade obeys a system of rate equations
relating the circulating photon number, pn, of the nth-
Stokes wave to the circulating photon number, pn−1, of
its preceding (n-1)st-pump wave [15].

ṗn = gnpn−1pn −

ωn

QT

pn, (3)

where

gn = ~ωnv
2

gΓ
gB
Veff

≈ ~ωnvgΓ
Ω

2π

(

gB
Aeff

)

(4)

is the Brillouin gain coefficient for the nth-Stokes wave in
Hertz units. Here, ωn is the optical frequency of the nth

Stokes wave, vg is the group velocity, Γ is the phonon-
photon mode overlap factor (defined as the optical mode
area, Aeff , divided by the acousto-optic effective mode
area [32]), gB is the bulk Brillouin gain coefficient of sil-
ica, Veff is the effective optical mode volume of the nth-
Stokes wave, and Ω = FSR is assumed. gB/Aeff is the
normalized Brillouin gain coefficient in W−1m−1 units.

As pumping to the resonator is increased, a Stokes
wave will begin to lase and increase in power until it
clamps when the threshold condition for the next Stokes
wave in the cascade is reached. This clamped power,
Pclamp, follows directly from the steady-state form of eq.
(3),

Pclamp =
ωn−1

QE

~ωn−1pn−1 ≈

1

g

~ω3

QTQE

(5)

where the approximation results from letting ωn−1 ≈ ωn

and in the final result the Stokes order, n, is suppressed.
At this clamped power, the fundamental SBL linewidth
follows by substitution of eq. (5) into eq. (1),

∆νclamp =
g

4π
(nT + 1). (6)

It is useful to note that the SBL linewidth in the clamped
condition is independent of QT and QE . From eq. (5),
measurement of Pclamp, QT and QE are sufficient to de-
termine g. If combined with eq. (6) and measurement
of ∆νclamp then nT can be determined at each operating
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FIG. 2. Aligning the 3rd Stokes wave to the Brillouin
gain spectrum maximum (a) Illustration showing spectral
placement of Stokes wave with respect to Brillouin gain spec-
trum maximum. Variation of the pumping wavelength causes
the Brillouin shift frequency (Ω) to vary and thereby scans
the Stokes wave across the Brillouin gain peak. (b) Measured
spectra of Pclamp, the 3rd-order Stokes wave power (black cir-
cle). The three panels show measurements performed at T
= 300 K, 77 K and 8 K. Each color corresponds to a dis-
tinct pumping wavelength. The 1st-order Stokes wave also
appears in the spectral map as the stronger peak near the
3rd-order Stokes wave. The pump wave is not observable in
the linear-scale spectrum as it propagates in the direction op-
posite to the 1st-order and 3rd-order Stokes waves. Pmin

clamp is
determined from the fitted red curve as the minimum power
point.
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temperature [33].

The coefficient g depends on the placement of the
Stokes wave within the Brillouin gain spectrum, and the
value of g at the spectral maximum (defined as g0) was
determined by tuning the pump frequency while record-
ing Pclamp. This causes the Brillouin shift frequency Ω
to also tune, and therefore to vary the spectral location
of the Stokes wave within the Brillouin gain band (see
Fig. 2(a)). Pclamp will be minimum (denote as Pmin

clamp)
when the Stokes wave is spectrally aligned to the max-
imum value of g, thereby allowing determination of the
pumping wavelength corresponding to maximum g. At
this pumping wavelength, the value Pmin

clamp can be used
to determine go from eq. (5) when QT and QE are mea-
sured.

Spectra showing multiple measurements of clamped
power for the 3rd-Stokes wave at different pumping wave-
lengths are presented in Fig. 2(b). The three panels show
spectra at T= 300, 77, and 8 K. The 3rd-Stokes wave
spectral peak at each pumping wavelength is identified
by a black circle. At each temperature, the minimum
clamped power and corresponding wavelength are deter-
mined from the quadratic fit (red curve in Fig. 2(b)).
The power clamping condition for the 3rd-Stokes wave
was determined by monitoring the onset of laser action
in the 4th-Stokes wave. Also, optical losses between the
resonator and the OSA were calibrated to determine the
clamped power. Table I summarizes the measured min-
imum clamped powers, Pmin

clamp, and their corresponding
pumping wavelengths. QT and QE are also given and
were determined by fitting both the linewidth and the
transmission minimum of the Stokes mode. Finally, g0,
calculated using eq. (5), is compiled in Table I [34].

To measure the laser linewidth, the beat of the 1st and
3rd Stokes waves is detected using a fast photodetector.
An electrical spectrum analyzer trace of this beat is pro-
vided as the inset in Fig. 1(e). As described elsewhere
[22] the phase noise of this beat signal provides spec-
tral components associated with the fundamental phase
noise of the Stokes waves and can be used to infer the
linewidth. Moreover, because the 1st-Stokes wave has
more power than the 3rd-Stokes wave (see Fig. 2(b)) the
fundamental linewidth of the 1st-Stokes wave is narrower.
Accordingly, fundamental phase noise in the beat signal
is dominated by the 3rd-Stokes wave. Also, microcav-

TABLE I. Experimental parameters for Brillouin gain
(g0) calculation

T λ QT QE Pmin
clamp g0

( K ) ( nm ) ( x 106 ) ( x 106 ) ( mW ) ( Hz )

300 1567.0 40 50.5 0.4 0.2272

77 1531.1 82.5 91 0.2423 0.1082

8 1530.8 94 103 0.0935 0.2174

ity technical frequency noise, while present, is reduced
in this measurement because the two Stokes waves lase
within a single cavity.

The phase noise of 1st/3rd-order SBL beatnote is mea-
sured at the Pmin

clamp wavelength determined in Fig. 2(b).
The measured phase noise spectra at 300 K, 77 K and
8 K are shown in Fig. 3(a) over offset frequencies from
10 kHz to 10 MHz. The carrier frequencies are ∼ 21.5
GHz and an instrument smoothing is applied to show the
noise trend. The theoretical phase noise spectrum for an
SBL is given by the expression,

L(ν) =
∆νmin

2ν2
=

g0
8πν2

(nT + 1) (7)

where ∆νmin is the fundamental linewidth given by eq.
(6) with g = g0. In the electrical spectrum a white
noise floor is also added to this phase noise. The black
dashed lines in Fig. 3(a) give minimum noise-level fits to
the measured phase noise spectra using eq. (7). These
spectral minima were reproducible over multiple spec-
tral scans. Even with the common-mode noise suppres-
sion noted above, there is considerable technical noise
coupling to the phase noise spectrum from the cryogenic
system; and the minimum noise in the band 30-50 kHz
provides most of the fitting information. Also, at 8 K,
the phase noise above 1 MHz is limited by the electronic
noise floor due to relatively lower Stokes signal power
compared to measured signal power at 300 K and 77 K.
The corresponding ∆νmin is plotted in Fig. 3(b). By
using g0 from Table I and the ∆νmin data in Fig. 3(b),
eq. (7) provides values for nT at the three temperatures
as plotted in Fig. 3(c). The Bose-Einstein thermal occu-
pancy is also provided for comparison. The discrepancy
between the lowest temperature nT value and the Bose-
Einstein value could result from parasitic optical heating
or temperature difference between the temperature sen-
sor and the resonator. A calibrated temperature of 22 K
is estimated using the Bose-Einstein curve.

In summary, stimulated Brillouin lasers are unusual
because their fundamental linewidth is predicted to be
limited by thermo-mechanical quanta of the Brillouin
mode. We have confirmed this prediction by determin-
ing the thermal phonon occupancy versus temperature
using the SBL phase noise. Measurements at 300 K,
77 K and 8 K are in good agreement with the expected
Bose-Einstein occupancy. This work provides a possible
way to reduce the SBL linewidth for precision measure-
ments. It also lends support to the theoretical predic-
tion that the quantum-limited linewidth of an SBL is
strongly influenced by the phonon zero-point motion. It
is also worth noting that the Brillouin gain bandwidth of
silica is reported to be rapidly narrowing at lower tem-
peratures and is expected to be comparable to the op-
tical cavity linewidth below 2 K [35]. In this regime,
the system would enter a cavity optomechanical regime
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FIG. 3. (a) Phase noise spectra of the 1st/3rd-order SBL beatnotes at three temperatures (300 K, 77 K, 8 K). The eq. (7) fit
at each temperature is the black dotted line. (b) Red points are minimum SBL linewidths (∆νmin) resulting from the fittings
in panel (a). (c) Thermal phonon occupancies (nT ) calculated from the measured ∆νmin and g0 (see Table I) are plotted
(red points) versus temperature. nT from the Bose-Einstein occupancy is given as the black line. Triangular point: nT -based
temperature calibration to 22 K using Bose-Einstein result.

[25, 28, 29] wherein optical damping can exceed mechan-
ical damping. This would require a modification to the
SBL linewidth formula [18].
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