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We determine within lattice QCD, the nucleon spin carried by valence and sea quarks,
and gluons. The calculation is performed using an ensemble of gauge configurations with
two degenerate light quarks with mass fixed to approximately reproduce the physical pion
mass. We find that the total angular momentum carried by the quarks in the nucleon is
Ju+d+s=0.408(61)stat.(48)syst. and the gluon contribution is Jg=0.133(11)stat.(14)syst. giving a to-
tal of JN=0.54(6)stat.(5)syst. consistent with the spin sum. For the quark intrinsic spin contri-
bution we obtain 1

2
∆Σu+d+s=0.201(17)stat.(5)syst.. All quantities are given in the MS scheme at

2 GeV. The quark and gluon momentum fractions are also computed and add up to 〈x〉u+d+s +
〈x〉g=0.804(121)stat.(95)syst. + 0.267(12)stat.(10)syst.=1.07(12)stat.(10)syst. satisfying the momentum
sum.

PACS numbers:

Introduction: The distribution of the proton spin
amongst its constituent quarks and gluons has been a
long-standing puzzle ever since the European Muon Col-
laboration showed in 1987 that only a fraction of the
proton spin is carried by the quarks [1, 2]. This was in
sharp contrast to what one expected based on the quark
model. This so-called “proton spin crisis” triggered a
rich experimental and theoretical activity. Recent exper-
iments show that only 30% of the proton spin is carried
by the quarks [3], while experiments at RHIC [4, 5] on
the determination of the gluon polarization in the pro-
ton point to a non-zero contribution [6]. A global fit
to the most recent experimental data that includes the
combined set of inclusive deep-inelastic scattering data
(DIS) from HERA, and Drell-Yan data from Tevatron
and LHC, led to an improved determination of the va-
lence quark distributions and the flavor separation of the
up- and down-quarks [7]. The combined HERA data also
provide improved constraints on the gluon distributions
but large uncertainties remain [7]. Obtaining the quark
and gluon contributions to the nucleon spin and momen-
tum fraction within lattice Quantum Chromodynamics
(QCD) provides an independent input that is extremely
crucial but the computation is very challenging. This
is because a complete determination must include, be-
sides the valence also sea quark and gluon contributions
that exhibit a large noise-to-signal ratio and are compu-
tationally very demanding. A first computation of the
gluon spin was performed recently via the evaluation of
the gluon helicity in a mixed action approach of overlap
valence quarks on Nf=2+1 domain wall fermions that
included an ensemble with pion mass 139 MeV [8]. In
this work, we evaluate all the contributions to the spin
of the proton as well as the gluon and quark momentum

fractions [9, 10]. Such an investigation has become feasi-
ble given the tremendous progress in simulating QCD on
a Euclidean four-dimensional lattice with quark masses
tuned to their physical values (referred to as the physical
point) in combination with new approaches to evaluate
sea quark and gluon contributions that were not possible
in the past [9, 11–13]. This first study of valence and sea
quark and gluon contributions directly at the physical
point allows us to obtain a complete information on the
distribution of the nucleon spin and momentum among
its constituents.

Computational approach: We use one gauge ensemble
employing two degenerate (Nf=2) twisted mass clover-
improved fermions [14, 15] with masses that approxi-
mately reproduce the physical pion mass [16] on a lat-
tice of 483 × 96 and lattice spacing a=0.0938(3) fm, de-
termined from the nucleon mass [17]. The strange and
charm valence quarks are taken as Osterwalder-Seiler
fermions [18, 19]. The mass of the strange quark is tuned
to reproduce the Ω− mass and the mass of the charm
quark is tuned independently to reproduce the mass of
Λ+
c as described in detail in Ref. [17]. The strange and

charm quark masses in lattice units determined through
this matching are aµs=0.0259(3) and aµc=0.3319(15),
respectively, yielding µc/µs=12.8(2). We note that if in-
stead we tune to the ratio of the kaon (D-meson) to pion
mass mK/mπ (mD/mπ) for the same ensemble we find
µc/µs=12.3(1) [16]. Given that an extrapolation to the
continuum, where the different definitions are expected
to be consistent, is not carried out and the errors quoted
are only statistical, this level of agreement is very satis-
factory. For the renormalized strange and charm quark
masses we find mR

s =µs/ZP=108.6(2.2)(5.7)(2.6) MeV
and mR

c =µc/ZP=1.39(2)(7)(3) GeV, where ZP is the
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pseudoscalar renormalization function determined non-
perturbatively in the MS at 2 GeV [17].

Matrix elements: We use Ji’s sum rule [20], that pro-
vides a gauge invariant decomposition of the nucleon spin
as

JN=
∑

q=u,d,s,c···

(
1

2
∆Σq + Lq

)
+ Jg,

where 1
2∆Σq is the contribution from the intrinsic quark

spin, Lq the quark orbital angular momentum and Jg is
the gluon total angular momentum. The quark intrinsic
spin 1

2∆Σq is obtained from the first Mellin moment of
the polarized parton distribution function (PDF), which
is the nucleon matrix element of the axial-vector opera-
tor. The total quark angular momentum, Jq, can be ex-
tracted by computing the second Mellin moment of the
unpolarized nucleon PDF, which is the nucleon matrix
element of the vector one-derivative operator at zero mo-
mentum transfer. These matrix elements in Euclidean
space are given by

〈N(p, s′)|OµA|N(p, s)〉=ūN (p, s′)
[
gqAγ

µγ5

]
uN (p, s),

〈N(p′, s′)|OµνV |N(p, s)〉=ūN (p′, s′)Λqµν(Q2)uN (p, s),

Λµνq (Q2)=Aq20(Q2)γ{µP ν} +Bq20(Q2)
σ{µαqαP

ν}

2m

+ Cq20(Q2)
1

m
Q{µQν}, (1)

with Q=p′−p the momentum transfer and P=(p′+p)/2
the total momentum. The axial-vector operator is
OµA=q̄γµγ5q and the one-derivative vector operator

OµνV =q̄γ{µ
←→
D ν}q, where the curly brackets in OV rep-

resent a symmetrization over pairs of indices and a sub-
traction of the trace. Λµνq is decomposed in terms of
three Lorentz invariant generalized form factors (GFFs)
Aq20(Q2), Bq20(Q2) and Cq20(Q2). A corresponding decom-
position can also be made for the nucleon matrix element
of the gluon operator Oµνg . The quark (gluon) total an-

gular momentum can be written as Jq(g)=
1
2 [A

q(g)
20 (0) +

B
q(g)
20 (0)], while the average momentum fraction is deter-

mined from A
q(g)
20 (0)=〈x〉q(g) and gqA≡∆Σq where gqA is

the nucleon axial charge. While Aq20(0) can be extracted
directly at Q2=0, Bq20(0) needs to be extrapolated to
Q2=0 using the values obtained at finite Q2.

We compute the gluon momentum fraction by consid-
ering the Q2=0 nucleon matrix element of the operator
Oµνg =2Tr[GµσGνσ], taking the combination Og≡O44 −
1
3Ojj ,

〈N(p, s′)|Og|N(p, s)〉=
(
− 4E2

N −
2

3
~p2

)
〈x〉g, (2)

where we further take the nucleon momentum ~p=0.

In lattice QCD the aforementioned nucleon matrix ele-
ments are extracted from a ratio, RΓ(ts, tins), of a three-
point function G3pt

Γ (ts, tins) constructed with an opera-
tor Γ coupled to a quark divided by the nucleon two-
point functions G2pt(ts), where tins is the time slice of
the operator insertion relative to the time slice where
a state with the quantum numbers of the nucleon is
created (source). For sufficiently large time separations
ts − tins and tins the ratio RΓ(ts, tins), yields the appro-
priate nucleon matrix element. To determine B20(Q2)
we need the nucleon matrix element for Q2 6= 0, which
can be extracted by defining an equivalent ratio as de-
scribed in detail in Refs. [21–23]. An extrapolation of
B20(Q2) is then carried out to obtain B20(0). We em-
ploy three approaches in order to check that the time
separations ts − tins and tins are sufficiently large to sup-
press higher energy states with the same quantum num-
bers with the nucleon. These are: i) Plateau method.
Identify the range of tins for which the ratio RΓ(ts, tins)
becomes time-independent and perform a constant fit;
ii) Summation method. Summing RΓ(ts, tins) over
tins, to yield

∑
tins

RΓ(ts, tins)=R
sum
Γ (ts)=C + tsM +

O
(
e−(E1−E0)ts)

)
+ · · · , where C is a constant. The ma-

trix elementM is then obtained from the slope of a linear
fit with respect to ts; iii) Two-state fit method. We per-
form a simultaneous fit to the three- and two-point func-
tion varying tins for several values of ts include the first
excited state in the fit function. If excited states are sup-
pressed, the plateau method should yield consistent val-
ues when increasing ts within a sufficiently large ts-range.
We require that we observe convergence of the values ex-
tracted from the plateau method and additionally that
these values are compatible with the results extracted
from the two-state fit and the summation method. We
take the difference between the plateau and two-state fit
values as a systematic error due to residual excited states.

The three-point functions for the axial-vector and
vector one-derivative operators entering the ratio
RΓ(ts, tins), receive two contributions, one when the op-
erator couples to the valence up and down quarks (so-
called connected) and when it couples to sea quarks and
gluons (disconnected). The connected contributions are
computed by employing sequential inversion through the
sink [24]. Disconnected diagrams are computationally
very demanding, due to the fact that they involve a
closed quark loop and thus a trace over the quark prop-
agator. A feasible alternative is to employ stochastic
techniques [25] to obtain an estimate of the all-to-all
propagator needed for the evaluation of the closed quark
loop. For the up and down quarks, we utilize exact defla-
tion [26, 27], by computing the Nev lowest eigenmodes of
the Dirac matrix to precondition the conjugate gradient
(CG) solver. Taking Nev=500 yields an improvement of
about twenty times, compared to the standard conjugate
gradient method. We also exploit the properties of the
twisted mass action to improve our computation using
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the so-called one-end trick [28, 29] that yields an increase
in the signal-to-noise ratio [30, 31]. This also allows the
evaluation of the quark loops for all insertion time-slices,
and since the two-point function is computed for all ts,
the disconnected three-point function is obtained for any
combination of ts and tins allowing a thorough study of
excited states effects. In addition, an improved approach
is employed for 〈x〉q exploiting the spectral decomposi-
tion of the Dirac matrix. Within this approach, we use
the lowest eigenmodes to construct part of the all-to-all
propagator in an exact manner. This allows us to invert
less stochastic sources for constant variance, hence Nr is
smaller for 〈x〉q in Table I. The remaining part of the loop
is calculated stochastically, with the use of the one-end
trick.

For the heavier strange and charm quarks, the trun-
cated solver method [32] (TSM) performs well [30, 31].
In the TSM an appropriately tuned large number of low-
precision and a small number of high-precision stochastic
inversions is combined to obtain an estimate of Gs(x;x).
We give the tuned parameters in Table I. These methods
have been recently employed to compute other nucleon
observables using this ensemble [33–35] as well as at
higher than physical pion masses [30, 31].

The three-point function of the gluon operator is
purely disconnected. To overcome the low signal-to-noise
ratio we apply stout smearing to the gauge links enter-
ing the gluonic operator Oµνg [36]. Use of an analytic
link smearing is essential for performing the perturba-
tive computation of the renormalization. Using smearing
and a total of 209400 measurements we obtain the bare
matrix element to a few percent accuracy [11].

In Table I we summarize the statistics used for the
calculation for both quark and gluon observables.

Connected Disconnected
ts/a Ncfg Nsrc Observable Ncfg Nsrc NHP

r NLP
r

10,12,14
16
18

579
542
793

16
88
88

light, gA 2136 100 2250 0
light, 〈x〉q 1219 100 1000 0
strange, gA 2153 100 63 1024
strange, 〈x〉q 2153 100 30 960
gluon, 〈x〉g 2094 100 - -

TABLE I: Statistics used in this calculation. ts is the sink
time separation relative to the source which is used for the
connected three-point functions. Ncfg is the number of con-
figurations and Nsrc the number of source positions per config-
uration. NHP

r (NLP
r ) is the number of high- (low-) precision

stochastic vectors used for the quark loops.

Renormalization: We determine the renormalization
functions for the axial-vector charge and one-derivative
vector operators non-perturbatively, in the RI′-MOM
scheme. We employ a momentum source and perform
a perturbative subtraction of O(g2a∞)-terms [37, 38].
This subtracts the leading cut-off effects yielding only
a weak dependence of the renormalization factors on the

renormalization scale (ap)2 for which the (ap)2 → 0 limit
can be reliably taken. Lattice QCD results for both
the isovector and isoscalar axial charge are renormal-
ized non-perturbatively with Z isovector

A =0.7910(4)(5) and
Z isoscalar
A =0.7968(25)(91) respectively [35, 37]. The one-

derivative vector operator is non-perturbatively renor-
malized with ZDV =1.1251(27)(17) in the MS-scheme at
2 GeV [37]. The renormalization of the gluon operator
is carried out perturbatively. Being a flavor singlet op-
erator, it mixes with other operators and in particular
the quark singlet operator. Due to this mixing, appro-
priate renormalization conditions require computation of
more than one matrix element. We perform the com-
putation in one-loop lattice perturbation theory and use
the action parameters that coincide with the ensemble of
this work. To avoid the introduction of an intermediate
RI-type scheme, we define a convenient renormalization
prescription that utilizes both dimensional and lattice
regularization results (see Ref. [11] for more details).

The physical result of the gluon momentum fraction
can be related to the bare matrix elements 〈x〉bare

g and

〈x〉bare
q using 〈x〉g = Zgg〈x〉bare

g + Zgq
∑
q〈x〉bare

q , where
Zgg and Zgq are computed to one-loop. We note that the
mixing coefficient Zgq is a fraction of the statistical er-
rors on our results. Therefore, for the quark momentum
fractions, we renormalize with the non-perturbatively de-
termined renormalization factor, neglecting the mixing
with the gluon operator. We note that the perturbative
and non-perturbative renormalization functions ZDV dif-
fer by 10%, which is a much larger effect than the mixing.

FIG. 1: The disconnected sea quark contribution (denoted by
disc.) to the isoscalar axial charge (upper) and momentum
fraction (lower) as a function of the sink-source time separa-
tion ts for the plateau method (circles) and as a function of
the lower time value of ts used in the fits for the summation
(green triangles) and two-state fit (blue square) methods. The
open circle indicates the final value and the band its statistical
error, while the open square is the value taken to determine
the systematic error due to excited state contamination.

In Fig. 1 we show the result of the three analyses car-
ried out to extract the disconnected contribution to the
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isoscalar axial charge gu+d
A and quark momentum fraction

〈x〉u+d. Taking the value at ts=14a=1.3 fm is consistent
with the result from the two-state fit and summation
method, for both quantities. We take the plateau value
at ts=14a as our final result and assign as systematic
error due to excited states the difference between this
value and the mean value determined from the two-state
fit. The same analysis is performed for the strange and
charm disconnected contributions. The analysis for the
valence quark contributions at lower statistics was pre-
sented in Ref. [39] and it is followed also here.

Results: In Fig. 2 we present our results on the up,
down and strange quark contributions to the nucleon ax-
ial charge that yield the quark intrinsic spin contributions
to the nucleon spin. Since we are using a single ensemble
we cannot directly assess finite volume and lattice spac-
ings effects. However, previous studies carried out us-
ing Nf=2 and Nf=2+1+1 twisted mass fermion (TMF)
ensembles at heavier than physical pion masses for the
connected contributions allow us to assess cut-off and
volume effects [21, 40]. In Fig. 2 we include TMF results
for Nf=2 ensembles at mπ∼465 MeV one with lattice
spacing a=0.089 fm and one with a=0.07 fm with similar
spatial lattice length L, as well as, at mπ=260 MeV, one
with a=0.089 fm and another with a=0.056 fm and sim-
ilar L. At both pion masses the results are in complete
agreement as we vary the lattice spacing from 0.089 fm
to 0.056 fm pointing to cut-off effects smaller than our
statistical errors. For assessing finite volume effects we
compare two Nf=2 ensembles both with a=0.089 fm and
mπ∼300 MeV, but one with mπL=3.3 and the other
with mπL=4.3. The values are completely compatible
showing that volume effects are also within our statisti-
cal errors. To assess possible strange quenching effects
we compare in Fig. 2 results for the connected contribu-
tions using Nf=2 and Nf=2+1+1 TMF ensembles both
at mπ∼375 MeV and find very good agreement [50]. The
latter is a high statistics analysis yielding very small er-
rors. We note, however, that the limited accuracy of the
Nf=2 result would still allow a quenching effect of the or-
der of its statistical error and only an accurate calculation
usingNf=2+1+1 simulations at the physical point would
be able to resolve this completely. In Fig. 2, we also
compare recent lattice QCD results on the strange in-
trinsic spin, 1

2∆Σs, at heavier than physical pion masses
and find agreement among lattice QCD results, indicat-
ing that lattice artifacts are within the current statistical
errors. We note, in particular, that all lattice QCD re-
sults yield a non-zero and negative strange quark intrinsic
spin contribution 1

2∆Σs. We also compute the charm ax-
ial charge and momentum fraction, at the physical point,
and find that both are consistent with zero.

To determine the total quark angular momentum Jq,
we need, beyond Aq20(0), the generalized form factor
Bq20(0), which is extracted from the nucleon matrix el-
ement of the vector one-derivative operator for Q2 6= 0

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
m  [GeV]

0.03

0.02

0.01

Strange

Hybrid, Nf=2+1, a=0.124 fm

Clover: f=2+1, a=0.074 fm Nf=2, a=0.073 fmN

0.20

0.15

0.10

0.05

1 2
q

Down
Nf=2: a=0.094 fm a=0.088 fm a=0.071 fm a=0.056 fm

0.3

0.4

0.5 Up

Nf=2+1+1: a=0.083 fm a=0.06 fm

Hybrid, Nf=2+1+1: a=0.090 fma=0.060 fm

TMF, 

TMF, 

FIG. 2: The up (upper), down (center) and strange (lower)
quark intrinsic spin contributions to the nucleon spin versus
the pion mass. Open symbols show results with only con-
nected contributions while filled symbols denote both con-
nected and disconnected contributions using the same ensem-
ble as the one for the connected only. Red diamonds are the
results of this work. Circles are Nf=2 results, and squares are
Nf=2+1+1 [30, 31, 40] by ETMC. We compare with lattice
QCD results from other O(a)-improved actions from Refs.[41]
(filled magenta triangle) by QCDSF, [42] (light blue cross)
and [43] by CSSM/QCDSF (yellow filled right triangle). We
also show results using a hybrid action from PNDME [44]
(open blue triangles). Experiment is denoted by the black
asterisks [45, 46].

as described in Ref. [21]. For the isovector case, we
find Bu−d20 (0)=0.313(19), and for the isoscalar connected

contribution Bu+d,conn.
20 (0)=0.012(20). We observe that

the latter is consistent with zero, as is the disconnected
contribution Bu+d,disc.

20 (Q2=0.074 GeV2). Similarly, the
strange and charm Bs,c20 (Q2) are zero, which implies
Js,c=

1
2 〈x〉s,c. In what follows we will also take the gluon

Bg20(0) to be zero and thus Jg=
1
2 〈x〉g.

Our final values for the quark total and angular mo-
mentum contributions are given in Table II. The value
of 〈x〉u−d=0.194(9)(11) is on the upper bound as com-
pared to the recent phenomenological value extracted in
Ref. [7]. Determinations of 〈x〉u−d within lattice QCD
using simulations with larger than physical pion masses
have yielded larger values, an effect that is partly un-
derstood to be due to contribution of excited states to
the ground state matrix element [47]. We note that our
value is in agreement with that determined by RQCD us-
ing Nf=2 clover fermions at pion mass of 151 MeV [48]
and that lattice QCD results on 〈x〉u−d and Ju−d for en-
sembles with larger than physical pion masses including
ours are in overall agreement [40]. Results within lattice
QCD for the individual quark 〈x〉q and Jq contributions
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TABLE II: Our results for the intrinsic spin ( 1
2
∆Σ), angular

(L) and total (J) momentum contributions to the nucleon
spin and to the nucleon momentum 〈x〉, in the MS-scheme
at 2 GeV, from up (u), down (d) and strange (s) quarks and
from gluons (g), as well as the sum of all contributions (tot.),
where the first error is statistical and the second a systematic
due to excited states.

1
2
∆Σ J L 〈x〉

u 0.415(13)(2) 0.308(30)(24) -0.107(32)(24) 0.453(57)(48)
d -0.193(8)(3) 0.054(29)(24) 0.247(30)(24) 0.259(57)(47)
s -0.021(5)(1) 0.046(21)(0) 0.067(21)(1) 0.092(41)(0)
g - 0.133(11)(14) - 0.267(22)(27)

tot. 0.201(17)(5) 0.541(62)(49) 0.207(64)(45) 1.07(12)(10)

are scarce. The current computation is the first one using
dynamical light quarks with physical masses. A recent
quenched calculation yielded values of 〈x〉u,d consistent
with ours.

In Fig. 3 we show schematically the various contri-
butions to the spin and momentum fraction. Using a
different approach to ours, the gluon helicity was re-
cently computed within lattice QCD and found to be
0.251(47)(16) [8]. Although we instead compute the
gluon total angular momentum and the two approaches
have different systematic uncertainties, we both find non-
negligible gluon contributions to the proton spin.

FIG. 3: Left: Nucleon spin decomposition. Right: Nu-
cleon momentum decomposition. All quantities are given in
the MS-scheme at 2 GeV. The striped segments show valence
quark contributions (connected) and the solid segments the
sea quark and gluon contributions (disconnected).

Conclusions: In this work we present a calculation of
the quark and gluon contributions to the proton spin,
directly at the physical point.

Having a single ensemble, we can only assess lat-
tice systematic effects due to the quenching of the
strange quark, the finite volume and the lattice spac-
ing indirectly from other twisted mass ensembles. A
direct evaluation of these systematic errors is cur-
rently not possible and will be carried out in the fu-
ture. Individual components are computed for the up,
down, strange and charm quarks, including both con-
nected (valence) and disconnected (sea) quark contri-

butions. Our final numbers are collected in Table II.
The quark intrinsic spin from connected and discon-
nected contributions is 1

2∆Σu+d+s=0.299(12)(3)|conn. −
0.098(12)(4)|disc.=0.201(17)(5), while the total quark
angular momentum is Ju+d+s=0.255(12)(3)|conn. +
0.153(60)(47)|disc.=0.408(61)(48). Our result for the
intrinsic quark spin contribution agrees with the up-
per bound set by a recent phenomenological analy-
sis of experimental data from COMPASS [49], which
found 0.13 < 1

2∆Σ < 0.18. Using the spin
sum one would deduce that Jg=

1
2−Jq=0.092(61)(48),

which is consistent with taking Jg=
1
2 〈x〉g=0.133(11)(14)

via the direct evaluation of the gluon momen-
tum fraction, which suggests that Bg20(0) is indeed
small. Furthermore, we find that the momentum
sum is satisfied

∑
q〈x〉q + 〈x〉g=0.497(12)(5)|conn. +

0.307(121)(95)|disc.+0.267(12)(10)|gluon=1.07(12)(10) as
is the spin sum of quarks and gluons giving JN=

∑
q Jq+

Jg=0.408(61)(48) + 0.133(11)(14)=0.541(62)(49) resolv-
ing a long-standing puzzle.
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