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Tensor networks impose a notion of geometry on the entanglement of a quantum system. In some
cases, this geometry is found to reproduce key properties of holographic dualities, and subsequently
much work has focused on using tensor networks as tractable models for holographic dualities.
Conventionally, the structure of the network – and hence the geometry – is largely fixed a priori
by the choice of tensor network ansatz. Here, we evade this restriction and describe an unbiased
approach that allows us to extract the appropriate geometry from a given quantum state. We
develop an algorithm that iteratively finds a unitary circuit that transforms a given quantum state
into an unentangled product state. We then analyze the structure of the resulting unitary circuits.
In the case of non-interacting, critical systems in one dimension, we recover signatures of scale
invariance in the unitary network, and we show that appropriately defined geodesic paths between
physical degrees of freedom exhibit known properties of a hyperbolic geometry.

Tensor networks have proven to be a powerful and
universal tool to describe quantum states. Originating
as variational ansatz states for low-dimensional quan-
tum systems, they have become a common language be-
tween condensed matter and quantum information the-
ory. More recently, the realization that some key proper-
ties of holographic dualities [1–5] are reproduced in cer-
tain classes of tensor network states (TNS) [6, 7] has led
to new connections to quantum gravity. In particular,
many questions about holographic dualities appear more
tractable in TN models [8–18]. The study of the geom-
etry of TN states underlies these developments. Here,
the physical legs of the network represent the boundary
of some emergent “holographic” space that is occupied
by the TN. While in networks such as matrix-product
states (MPS) [19–21] and projected entangled-pair states
(PEPS) [22–24] this space just reflects the physical ge-
ometry, other networks – such as the multi-scale entan-
glement renormalization ansatz (MERA) [25, 26] – can
have non-trivial geometry in this space [7]. We will refer
to this geometry as “entanglement geometry”.

In this paper, we investigate whether this entangle-
ment geometry can be extracted from a given quantum
state without pre-imposing a particular structure on the
TN [27]. We first describe a greedy, iterative algorithm
that, given a quantum state, finds a 2-local unitary cir-
cuit that transforms this state into an unentangled (prod-
uct) state (see Fig. 1). Such circuits, composed from
unitary operators acting on two sites (which are not nec-
essarily spatially close to each other), can be viewed as a
particular class of TNS where the tensors are the unitary
operators that form the circuit.

We then develop a framework for analyzing the ge-
ometry of these circuits. First, we introduce a locally
computable notion of distance between two points in
the circuit, thus inducing a geometry in the bulk. We
then focus on a particular property of this geometry, the

length of geodesics (shortest paths through the circuit)
between physical (boundary) sites. A similar quantity
has been previously discussed as a diagnostic of geome-
try in tensor networks [7], and reveals similar information
as the minimal spanning surface in the celebrated Ryu-
Takayanagi (RT) formula for the entanglement entropy
in AdS/CFT [28, 29]. Crucially, our definition takes into
account the strength of each local tensor, and thus allows
us to numerically compute an appropriate length without
imposing additional restrictions on the tensors [11] or a
priori knowledge of the emergent geometry.

Applying these techniques to many-particle quantum
states, we observe three regimes: (i) a flat (zero curva-
ture) two-dimensional geometry, (ii) a hyperbolic two-
dimensional geometry, and (iii) a geometry where the
geodesic distance between all points is equal, which cor-
responds to zero (fractal) dimension. We first observe
these in eigenstates of non-interacting fermions in a dis-
order potential. For low-energy eigenstates with weak
disorder, we find a hyperbolic geometry and thus re-
cover key aspects of the AdS/CFT duality [1–5]. Go-
ing beyond eigenstates, we study a quench from the lo-
calized to the delocalized regime, i.e. the evolution of a
localized initial state under a Hamiltonian with vanish-
ing disorder potential. In this case, the geodesics reveal
detailed information about the deformation of the emer-
gent geometry, which progresses from flat geometry (i)
to zero-dimensional (iii). This process reproduces cer-
tain aspects of previous holographic analyses of quantum
quenches [30–32].

In a complementary approach [33], we also examine
the nature of emergent light cones in the unitary net-
work. In the case of critical systems, these are found to
exhibit features of scale invariance. In the cases of local-
ized and thermal states, the light cones reveal that the
entanglement is fully encoded in local and global opera-
tors, respectively.
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FIG. 1. Example of a two-local unitary circuit, where each
unitary acts only on the two qubits that are at its ends. The
thick red line indicates a geodesic between the 5th and 9th
qubit (from the left), following a path through the circuit as
given by Fig. 2.

Disentangling algorithm— Our algorithm for finding a
unitary disentangling circuit is in many ways inspired by
the strong-disorder renormalization group [34, 35]. How-
ever, there are two crucial differences. First, instead of
acting on the Hamiltonian, the algorithm acts on a par-
ticular state. Second, rather than on the energetically
strongest bond, at each step the algorithm works on the
most strongly entangled pair of sites. The algorithm has
two desirable properties. First, it works for a broad class
of input states, including states that have area law and
volume law entanglement. This comes at the cost of gen-
erating circuits that cannot in general be contracted in
polynomial time. Second, each iteration of the itera-
tive algorithm is completely determined by the output
of the previous iteration; we thus avoid solving the chal-
lenging non-linear optimization problems that are usually
encountered when optimizing a tensor network. Similar
algorithms have been put forward in Refs. 17 and 36.

We take as input a quantum state |ψ〉 on a lattice L.
We denote as ρij the reduced density matrix on sites
i, j ∈ L, ρij = TrL\{i,j} |ψ〉〈ψ|, and as ρi the reduced
density matrix on site i, ρi = TrL\{i} |ψ〉〈ψ|, and S(ρ) =
−Tr ρ log ρ. The algorithm proceeds as follows:

Algorithm 1 (i) Calculate the mutual information be-
tween all pairs of sites, I(i : j) = I(ρij) ≡ S(ρi) +
S(ρj) − S(ρij), and find the pair (i, j) with the largest
mutual information. If all I(i : j) are below some prede-
fined threshold ε, terminate. (ii) Find the unitary matrix
Ûij that acts only on sites i and j and maximally reduces
the amount of mutual information between these sites,
i.e. solve minÛij I(ÛijρijÛ

†
ij). (iii) Set |ψ〉 ← Ûij |ψ〉,

and return to step 1.

Details of the algorithm, in particular step (ii), can be
found in the Supplementary Material [33]. For an exact
representation of a many-body state in a Hilbert space
of dimension dimH, one iteration of the above algorithm
can be carried out with computational cost O(LdimH)
[37]. For a system of non-interacting fermions, however,

the algorithm can be completely expressed in terms of the
correlation matrix Cij = 〈ĉ†i ĉj〉 [33, 38–40]. Given the ini-
tial correlation matrix, the algorithm can be performed
in O(L) operations per iteration, where L is the number
of fermionic modes. In all cases, a single iteration of the
algorithm can be performed as fast or faster than find-
ing the eigenstates. The number of iterations required
to converge to an unentangled state depends heavily on
the input state: for weakly entangled states, convergence
is fast, while for states with large entanglement, such as
completely random quantum states, convergence can be
very slow. Furthermore, the algorithm is not straight-
forwardly applicable to certain specific classes of states
(see, e.g., the perfect tensors of Ref. 11). We numeri-
cally explore convergence for some relevant cases in the
Supplemental Material [33].

The algorithm ultimately constructs a unitary circuit

Û = Û
(τ)
iτ jτ

. . . Û
(2)
i2j2

Û
(1)
i1j1

acting on the initial state |Ψ〉,
where Û

(τ)
iτ jτ

is the unitary obtained in the τ ’th step. The
number of execution steps corresponds to the number of
unitaries comprising the circuit. The circuit is 2-local in
the sense that each unitary acts on two sites, but it is not
local in the lattice geometry because the two sites i and
j may be arbitrarily far apart. Furthermore, this circuit
is not unique: an ambiguity arises since the unitary can
always be followed by a swap of the two sites or a single-
site unitary while keeping the mutual information the
same [33].

Emergent geometry of unitary circuits— A powerful
way to probe the geometry of the unitary network is to
measure the length of “geodesics”, i.e. the shortest paths
connecting two physical sites on the boundary of the cir-
cuit through the bulk of the circuit (see Fig. 1). The
crucial ingredient for a numerical analysis of the unitary
circuits is an appropriate notion of length for a path in
the circuit which incorporates the strength of each uni-
tary operator. It is obvious that a careful definition of
this quantity is necessary: If, for example, one were sim-
ply to count the number of unitaries traversed in connect-
ing two sites, one would – for a sufficiently deep circuit
– always find a length of 1, since eventually all pairs of
sites will be directly connected by a unitary. However,
deep in the circuit the unitaries are very close to the iden-
tity, and therefore do not mediate correlations between
the two sites. It is also desirable for the definition of
length to be invariant under trivial deformations of the
circuit, such as introducing additional swap, identity, or
single-qubit gates. Finally, the distance measure should
be computable locally and not rely on any global features
of the graph.

Our definition of length builds on a local connection
between geodesic length and correlations [8]. We con-
struct a weighted, undirected graph as illustrated in
Fig. 2: The vertices of the graph are the indices of the
unitary operators. Edges connecting different operators
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FIG. 2. Left panel: Labeling of the input and output indices
on a unitary operator. Right panel: Local graph correspond-
ing to the unitary operator, with weights labeled on the in-
ternal edges.

have weight 0, while the internal edges connecting dif-
ferent indices of the unitary have lengths dab as labeled
in the right-hand side of Fig. 2. To define dab, we inter-
pret the unitary as a wavefunction on four qubits and set
dab = − log[I(a : b)/(2 log 2)], where I(a : b) is the mu-
tual information between qubits a and b of the normalized
wavefunction. Unitarity dictates d12 = d34 = ∞: these
two lengths are not included in the graph. Entanglement
monogamy [41, 42] implies that if d24 = 0 (d14 = 0),
d13 (d23) must also vanish and d14 (d24) must be infinite.
Given this weighted, undirected graph, the minimal dis-
tance between two vertices is computable using standard
graph algorithms.

To develop some intuition for this quantity, con-
sider the length of a path in well-known TNS such as
MPS/PEPS and MERA [7]. Assuming that each tensor
in such a network has roughly equal strength, we can
for now simply take the length to be the number of ten-
sors that a path between two points traverses. For an
MPS or PEPS, the length of the geodesic is then simply
the physical distance between the sites, indicative of a
flat entanglement geometry. In contrast, the length of a
geodesic in a MERA scales only logarithmically with the
physical distance, since the path is shorter when moving
through the bulk of the TN [7]; this is a signature of a
hyperbolic entanglement geometry.

It is important to contrast the geodesics considered
here with the minimal surfaces in the RT formula for
the holographic entanglement entropy. In the standard
translation to TNS, such a minimal surface is given by
the minimal number of bonds that need to be cut in or-
der to completely separate two regions of physical sites.
A minimal surface in this sense can be defined for any
TN, and always yields an upper bound to the entangle-
ment entropy between the two regions [43]. While in
some cases these minimal surfaces also take the form of
geodesics [11], they are distinct from the geodesics as
defined in this manuscript, which connect pairs of sites
rather than separate regions of sites. The difference is
most easily seen in a MPS: while our geodesics are linear
in the physical distance, the minimal separating surface
is constant, since at most two bonds need to be cut to
separate the TN. While our definition is more natural in
the context of unitary circuits, they are complementary
to each other, and both reveal similar information when

appropriately interpreted.

It is important to recognize that while our distance
measure locally is connected to correlations, there is no
simple one-to-one correspondence between the behavior
of our geodesics and the behavior of two-point correlation
functions. As outlined in Ref. 7, an intuitive relation is
for correlations to decay exponentially with the geodesic
length. This relation is precise for MPS, and also sug-
gests the possibility of power-law decay of correlations in
MERA (although for certain MERA the correlations may
decay faster). However, the connection breaks down in
the case of a PEPS: while the length of a geodesic is al-
ways at least the physical (Manhattan) distance, it is pos-
sible to find PEPS whose correlations decay as a power
law [44]. Finally, the intricate behavior in a quantum
quench discussed below is largely invisible to two-point
correlations.

Models— We first study the properties of the disen-
tangling circuits in a model of non-interacting spinless
fermions in one dimension moving in a disorder poten-
tial. We discuss further examples in the Supplemental
Material [33]. The random-potential model is given by

Ĥ = −t
∑
i

(
ĉ†i ĉi+1 + ĉ†i+1ĉi

)
+
∑
i

wiĉ
†
i ĉi, (1)

where ĉ†i creates a spinless fermion on the i’th site of
a chain of length L. Throughout this paper, we work
with periodic boundary conditions, set t = 1 as an over-
all energy scale, and focus on Slater determinants at half
filling. The random on-site potential is chosen from a uni-
form distribution of width W , wi ∈ [−W/2,W/2]. For
vanishing disorder W → 0, this system is critical and the
long-wavelength limit of the ground state is described by
a free-boson conformal field theory with central charge
c = 1. For any finite strength of the disorder poten-
tial, the fermions localize [45]. However, for very small
W � 1, the localization length ξloc is large compared
to the system sizes we study, allowing us to break trans-
lational invariance without significantly affecting physi-
cally observable properties.

Numerical results— Our numerical findings for the
scaling with the physical distance of geodesics in ground
states of (1) are shown in Fig. 3 for different disorder
strengths. Consider first the case of very large disor-
der strength, and thus short localization length. The
geodesic length initially grows as dg ∼ log dp with the
physical distance dp (see in particular the inset of Fig. 3),
and then crosses over to a linear dependence dg ∼ dp, in-
dicated by the sharp kink in Fig. 3. This behavior at
large physical distance is characteristic of the flat entan-
glement geometry expected in a localized state. As the
disorder strength decreases, the crossover shifts to larger
and larger distances, indicating that the crossover length
corresponds to the localization length. For very weak dis-
order potential (such as W = 0.1, where the localization
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FIG. 3. Geodesic length of the L = 500 Anderson disorder
model for different values of the disorder strength W , with
200 realizations each. While the physical distance is given in
lattice spacings, the geodesic length is in arbitrary units. The
inset shows the same data for W = 6.0, 8.0, 10.0 on a linear
scale to highlight the linear dependence dg ∼ dp.
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FIG. 4. Quench from the ground state of the Anderson dis-
order model with with L = 200 sites and W = 8 to the clean
case W = 0. Left panel: Geodesic length dg as a function of
physical distance dp. Right panel: entanglement entropy of a
contiguous region of ` sites. Individual lines represent snap-
shots of the system at times equally spaced between T = 0
to T = 25.25 averaged over 200 disorder realizations. The
curves in the left panel have been offset by −15 · T . Increas-
ing copper/decreasing blackness indicates times further in the
quench.

length exceeds the system size), the region of logarithmic
dependence spans the entire system. This is the hallmark
feature of hyperbolic entanglement geometry and estab-
lishes a connection to other holographic mappings, such
as the AdS/CFT correspondence.

Going beyond eigenstates, we now consider a quench
where the system is initialized in the ground state of (1)
with finite disorder (W = 8 in the examples chosen here),
and is subsequently evolved under the translationally-
invariant Hamiltonian (W = 0). This is similar to

quenching the mass gap from a finite value to zero. We
evolve up to time T = 100, performing the disentan-
gling algorithm to obtain dg(dp) at various times during
the quench. Our results are shown in the left panel of
Fig. 4, while the right panel shows the growth of bipar-
tite entropy of a block of ` sites, and thus the crossover
from area-law to volume-law entanglement entropy scal-
ing. Note that here, in contrast to Fig. 3, the horizontal
axis scales linearly.

Initially, the system exhibits the expected dg ∼ dp scal-
ing of a localized system. The dominant effect at early
times is a fast reduction in the scaling coefficient. How-
ever, careful examination at early times already reveals a
drastic change in the scaling behavior at short distances,
where dg, instead of growing linearly with dp, becomes
nearly constant (or even decreases slightly). There is a
sharp kink associated with the crossover from this to the
linear behavior, which moves out to larger and larger
distances with time, and finally reaches the maximal dis-
tance dp = L/2. Comparison with the right panel of
Fig. 4 shows that the location of the kink corresponds
to the crossover from area-law to volume-law scaling of
the bipartite entanglement entropy. Once the system has
reached a long-time state with volume-law entanglement
entropy, dg shows some dp-dependence only for short dis-
tances, and is flat otherwise.

In terms of the emergent entanglement geometry, the
interpretation of these findings is as follows: the global
quench excites a homogeneous and finite density of local
excitations, which ballistically spread and entangle with
each other. Both the kink and the area- to volume-law
crossover follow the spread of this wavefront. For dis-
tances beyond this (time-dependent) scale, the circuit is
not qualitatively affected; however, a quantitative change
in the coefficient dg/dp occurs. Similar to the coefficient
of an area law, this quantity is easily changed by a lo-
cal finite-depth unitary. Within the characteristic length
scale, on the other hand, the nature of the circuit is quali-
tatively changed from a short-ranged circuit encoding an
area law state to a very long-ranged circuit, with uni-
taries connecting the current location of an excitation to
its origin, and thus encoding volume-law entanglement.
In the final state, this long-ranged circuit dominates the
geodesic, with only the short-distance behavior which
originates from the boundary of the circuit exhibiting
some locality. This bears resemblance to the final state in
other holographic theories of quantum quenches [30, 31],
with the non-local part of the circuit playing the role of
a black hole. The relation of our results for intermedi-
ate times to the model put forward in these references
is an open question left for future work. We also note
that some details of the emergent geometry, including in
particular oscillations observed at times longer than the
initial spreading of entanglement shown in Fig. 4, may
be due to integrability of the model.

Outlook— While we have so far applied our methods
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to systems where a holographic description is already
known, the fact that we did not make use of any a priori
knowledge of these systems makes our methods ideally
suited to systems with no known holographic descrip-
tion. Most prominently, this includes the many-body lo-
calization transition [46–51], which is known to be char-
acterized through entanglement properties [50] while the
details of the transition remain controversial [52–54].
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