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By combining confocal microscopy and Stress Assessment from Local Structural Anisotropy
(SALSA), we directly measure stresses in 3D quiescent colloidal liquids. Our non-invasive and
non-perturbative method allows us to measure forces . 50 fN with a small and tunable probing
volume, enabling us to resolve the stress fluctuations arising from particle thermal motions. We use
the Green-Kubo relation to relate these measured stress fluctuations to the bulk Brownian viscosity
at different volume fractions and comparing against simulations and conventional rheometry mea-
surements. We find that the Green-Kubo analysis gives excellent agreement with these prior results
suggesting similar methods could be applied to investigations of local flow properties in many poorly
understood far-from-equilibrium systems, including suspensions that are glassy, strongly-sheared, or
highly-confined.

PACS numbers: 05.40.-a, 05.60.-k, 82.70.Dd, 83.85.Cg

All quiescent thermal systems may seem static macro-
scopically, but microscopically they fluctuate strongly.
By observing the system’s response to these thermal fluc-
tuations, a material’s linear transport coefficients can
be predicted using the Green-Kubo relation [1–4]. This
foundational relation – a central achievement of nonequi-
librium statistical mechanics – has enabled numerous
diverse theoretical calculations ranging from electrical
and magnetic susceptibilities in quantum systems [5, 6]
to thermal conductivities in nanotubes [7–10]. In par-
ticular, it has been widely used to theoretically deter-
mine the viscosities in bulk [11], confined [12, 13], super-
cooled [14, 15], and quantum [16] liquids, where exter-
nal load is problematic or heterogeneities play a crucial
role. Unfortunately, these applications have remained
strictly theoretical due to the difficulties in experimen-
tally observing fluctuations in atomic systems, which are
too rapid (∼ ps) and weak (∼ µN) to mechanically re-
solve in experiments.

Here, by using high-speed confocal microscopy in con-
junction with Stress Assessment from Local Structural
Anisotropy (SALSA) [17], we directly measure the stress
fluctuations in nearly hard-sphere colloidal liquids. Col-
loidal suspensions are comprised of particles that are
small enough to demonstrate Brownian motions, while
large enough to be optically imaged, providing length-
and time-scales that are associated with system relax-
ation [18]. To measure a suspension’s stress fluctuations,
we use a confocal microscope to image the 3D microstruc-
ture of the sample, then use SALSA to determine its
Brownian stress arising from interparticle thermal colli-
sions. Since SALSA is image-based, non-invasive, non-
perturbative, and able to measure the suspension stress
with a tunable probing volume, it can resolve the weak
stress fluctuations that are usually averaged out in con-
ventional bulk measurements due to the requisite large
probing volume. Such measurements allow for using the
Green-Kubo relation to determine the suspension viscos-
ity.

The suspension samples are comprised of silica spheres
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FIG. 1: (a) Schematic of the experiment setup and axis. The
suspension sample is hermetically sealed in a sample cell, and
placed on a high-speed confocal microscope to image its mi-
crostructure. The measurement window (dashed box) is ∼ 5
µm above the coverslip avoiding boundary effects. (b) The
featured particle positions are used to calculate the stress us-
ing SALSA. The selected particle’s (orange) local structural
anisotropy is calculated based on the configuration of its col-
liding neighbors (blue) that lie within a thin shell ∆ ≈ 106
nm (green). This process is done for each snapshot giving the
instantaneous Brownian stresses σxz (orange line) and σxy

(blue line) fluctuating within ∼ ± 0.5 mPa.

with a radius a = 490 nm in a water-glycerine mixture
that has a matched refractive index and viscosity η0 = 60
mPa·s. We add 1.25 mg/ml of fluorescein sodium salt to
the solvent to shorten screening length (≤10 nm) and
obtain nearly hard sphere interactions. The added flu-
orescein also makes the solvent fluorescent, so the sol-
vent appears bright and the particles appear dark. We
then image the particle configuration using a high-speed
confocal microscope with a hyper-fine scanner that max-
imizes the stability in the vertical (z-axis) scanning posi-
tion (schematic in Fig. 1(a)). To ensure that the suspen-
sion structure remains homogenous throughout the ex-
periment, we image the sample within a minute after the
sample cell is made. We capture 216 frames per second
and acquire stacks of 100 images within 0.5 s ∼ 0.02τB,
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FIG. 2: (a) Time-time autocorrelation functions of σxz (orange) and σxy (blue) are calculated from the time series of stress.
The green line shows an exponential fit to the data to extract the time scale of the stress autocorrelation functions. The
cross-correlation 〈σxz(t+ ∆t)σxy(t)〉 (gray) is consistent with zero showing low coupling between components. For clarity, the
autocorrelation is normalized by its corresponding fluctuation’s variance, and the cross-correlation is normalized by the mean
variance of all autocorrelations. (b) The correlation time τ of the stress fluctuation varies weakly with the volume fraction φ,
a trend that is consistent with the variation of the inverse self-diffusivity D0/Dss(φ) found in Accelerated Stokesian Dynamics
simulations (ASD) [19]. Here, D0 is the diffusivity in ultra-dilute limit and a2/Dss roughly determines the relaxation time-scale
of the suspension. (c) Mean variance, Cij , of all shear stress components is plotted versus the normalized probing volume V/Vp,
where Vp is particle volume. The gray line denotes an inverse proportionality between Cij . The inset shows that the measured
viscosity η ≈ 50.5 mPa.s is roughly constant when V/Vp ≥ 200 and starts to decay slightly at smaller probing volumes. We set
the measurement window V = 61µm×15µm×12µm, V/V p ∼ 22, 280 (orange line) throughout all measurements.

where τB = 6πa3η0/kBT is the self-diffusion time of the
sample.

By implementing the previously developed SALSA
method [17], we determine the stress in our 3D sus-
pensions. SALSA uses the featured particle positions
to calculate the local structural anisotropy or fabric ten-

sor ψαij(∆) =
∑
β∈nn r̂

αβ
i r̂αβj of particle α, where nn is

the set of colliding neighbors that lie within a distance
2a + ∆ from particle α (∆ = 106 nm in the current
work), i,j are spatial indices, and r̂ij is the unit vec-
tor between particles (see Fig. 1(b) and SI [67]). Scal-
ing the ensemble-averaged ψαij(∆) by ∆ enables us to
estimate the probability of thermal collisions between
particles. Consequently, the instantaneous Brownian
stress of the sample can be approximated: σij(V,∆) =
kBT
V

a
∆

∑
α∈V ψ

α
ij(∆) + nkBTδij , where V is the averag-

ing window volume, kBT is thermal energy, n is number
density, and δij is Kronecker delta function. Here, nkBT
is simply the ideal gas term.

The typical volume of our probed region V =
61µm×15µm×12µm ∼ 10 pL contains approximately
6,000 particles at a volume fraction φ ∼ 0.27. This small
volume ensures that the stress fluctuations are not sup-
pressed by the volume averaging, ∝ 1/V , while preserv-
ing bulk behavior. We plot the instantaneous stress σxz
and σxy in Fig. 1(b), where ẑ is the gravitational axis and
x̂ and ŷ are horizontal. In contrast to a flat line at zero
level anticipated in a macroscopic measurement, we find
that both σxz and σxy fluctuate up to ± 0.5 mPa. We
note that the force fluctuations corresponding to these
stresses are less than 50 fN, difficult to resolve using me-
chanical methods.

We calculate the time-time autocorrelation function
〈σij(t+∆t)σij(t)〉 for the stress components σxz and σxy,
and show the correlation decay in a log-linear plot, see
Fig. 2 (a). Despite the slight sedimentation due to the
density mismatch between the particle and solvent, both
autocorrelation functions decay in the same fashion indi-
cating an isotropic viscosity of the sample (see SI). We
further examine the cross-correlation 〈σxz(t+ ∆t)σxy(t)〉
and find it negligibly small, which is consistent with the
system symmetry. While the exact function form of the
autocorrelation decay cannot be determined from the
current data due to the limited measurement time span,
we use an exponential decay (∼ e−∆t/τ ) to quantify the
correlation time. In doing this, we find that the corre-
lation time τ varies weakly with the suspension volume
fraction φ (see Fig. 2 (b)). We compare our observed
trend with previous simulations of short-time diffusivity
Dss where a2/Dss roughly sets the relaxation time-scale
of the system [19,20]. In simulations, Dss decays ap-
proximately as Dss ∼ D0(1 − bφ) (red line, Fig. 2 (b))
with b on the order of 1.5 at intermediate volume frac-
tions. Here, we find a weaker trend b ∼ 0.60± 0.23 (blue
dashed line) indicating either our measurements are not
sufficiently precise to determine b accurately or that the
functional form changes at volume fractions approaching
close-packing.

With the measured stress fluctuations, we can directly
calculate the shear viscosity of our sample via the Green-
Kubo formula ηB = 〈 V

kBT

∫
〈σij(t + ∆t)σij(t)〉d∆t〉i 6=j ,

where ηB is the Brownian contribution to the total shear
viscosity ηtot. We note that to calculate the final viscos-
ity, an additional factor of ∆/∆0 is included in the stress
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correlation calculation. This factor accounts for the shell
geometry’s contribution to the autocorrelation time av-
erage [35]. Since our suspension systems are nearly hard-
sphere, we anticipate that the stresses are weakly corre-
lated in space, and thus the sample viscosity is roughly
independent of probe window size. To verify this, we
change our probing (averaging) volume V , and investi-
gate how the stress fluctuations vary. In Fig. 2(c), we plot
the mean variance of shear stress Cij = 〈σij(t)σij(t)〉t,i6=j
as a function of V/Vp where Vp is the particle volume
(4/3)πa3. We find that Cij is inversely proportional to
V/Vp when V/Vp ≥ 200 corresponding to a cubic volume
that is approximately six particles across. This inverse
proportionality and constant viscosity shown in the inset
of Fig. 2(c) are consistent with the Green-Kubo formula.
When V/Vp ≤ 200, we find that the viscosity slightly
deviates from its bulk value. The viscosity reduction is
around 20% of the mean for the smallest probing volume
explored – a three-particle wide cube. While this reduc-
tion is reminiscent of the system size-dependent viscosity
associated with long-ranged stress correlations in atomic
simulations [36–42], in our nearly hard-sphere liquid sys-
tem we do not anticipate such long-ranged correlations
that lead to nonlocal viscosities. Instead, at small vol-
umes, the stress fluctuations are strongly influenced by
changes in particle number as particles pass into and out
of the constrained field of view.

To compare our results with macroscopic flow mea-
surements and simulations, we use the measured stress
autocorrelation in conjunction with the Green-Kubo re-
lation to determine the Brownian viscosity ηB of suspen-
sions at eight different volume fractions 0.12 ≤ φ ≤ 0.45
(see Fig. 3). We determine the shell geometry factor
∆0 ∼ 100 nm by fitting the data point at φ = 0.28
to the ASD simulations. The resulting viscosities (red
circles) show excellent agreement with previous hydro-
dynamic Stokesian simulations (blue squares) [19] at all
volume fractions. To further confirm the accuracy of our
SALSA stress measurement, we also use Brownian Dy-
namics simulations to generate sets of particle configura-
tions matching the experimental parameters (e.g. parti-
cle size, solvent viscosity, and temperature), and compare
the stresses calculated from actual virials FijXij (pur-
ple diamonds) with those calculated on the same data
set with SALSA (green diamonds) [47]. Both results
again show a quantitative agreement with the experi-
mental measurements. Finally, the measured Brownian
viscosities are compared with conventional mechanical
measurements by subtracting the hydrodynamic contri-
bution ηH from the total viscosity ηtot determined using
rheometry (purple crosses) [24, 43]. The rheology data
points (colloidal PMMA and silica systems) are obtained
from previous experiments [43] and the hydrodynamic
contribution is calculated from previous analytical ap-
proximation for the high frequency viscosity [43–46]. We
find good agreement between the viscosities determined
by our stress fluctuation measurements and conventional
rheometry at all volume fractions explored.
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FIG. 3: Relative Brownian viscosity ηB/η0 calculated using
the Green-Kubo relation (red circles) is plotted versus vol-
ume fraction φ, where η0 is the solvent viscosity. The er-
ror bars denote the standard errors over 14 runs of measure-
ments. The experimental results are quantitatively consistent
with accelerated Stokesian dynamics simulations, ASD (blue
squares) [19]. Furthermore, we find that the measured Brow-
nian viscosity of our suspension is also consistent with our
Brownian dynamics simulation results determined with di-
rect stress calculation ~F~x (purple diamonds) and the SALSA
method (green diamonds). Finally, we find our results are
in excellent agreement with rheometry measurements (purple
crosses) [43]. In particular, we subtract the hydrodynamic
contribution ηH from the total viscosity ηtot measured us-
ing bulk rheometry to determine the Brownian component,
where ηH is obtained from analytical calculations reported in
previous work [43–46].
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FIG. 4: (a) Osmotic pressure Π (red disks) averaged over time
is plotted versus φ. We find that the measured trend Π(φ) is
consistent with the Carnahan-Starling equation of state (CS
EoS, gray line). (b) Log-log plot of the normalized Brown-
ian contributions to the bulk ηbulkB /ηo (dark red points) and
shear ηB/ηo (light red points) viscosities versus Π showing a
Π2 scaling (dashed black line), where η0 is the solvent viscos-
ity. The atomic liquid viscosity η/η′0 (blue curve, reproduced
from [40]) exhibits a similar scaling behavior only at high
pressures, where η′0 is the ideal gas viscosity derived from the
Boltzmann equation (see SI).



4

In contrast to conventional mechanical measurements,
which can only measure the flow-gradient stress and the
difference between normal stresses, SALSA measures all
stress components simultaneously. In Fig. 4(a) we re-
port the pressure of the suspension at the eight volume
fractions explored in Fig. 3. We find that the measured
osmotic pressure arising from Brownian collisions (red
disks) is well described by the Carnahan-Starling equa-
tion of state (gray line) [68]. In addition, we find that
both the shear (ηB , light red points) and bulk (ηbulkB , dark
red points) viscosities roughly exhibit Π2 scaling (dashed
black line), as shown in Fig. 4(b). While the underly-
ing mechanism of such an empirical scaling remains an
open question, we can qualitatively understand this scal-
ing for the bulk viscosity using a dimensional analysis.
Since the correlations in the Green-Kubo formula decay
approximately exponentially in time, and the relaxation
time τ does not increases significantly with increasing
pressure over the range measured, we have

ηbulkB ∼
∫ ∞

0

〈(Π(t+ ∆t)− Π̄)(Π(t)− Π̄)〉d∆t

∼
∫ ∞

0

CΠe
−∆t/τd∆t ∼ 〈Π2〉 − 〈Π〉2

where CΠ is the variance of pressure [48, 49].
While many previous studies have made analogies be-

tween the transport phenomena of colloidal systems and
simple liquids [20, 24, 50, 51], we find that the observed
Π2 scaling is actually absent in atomic systems. Specif-
ically, the atomic viscosity (blue curve in Fig. 4(b)) ex-
hibits a similar scaling behavior, but only at high pres-
sures corresponding to large φ. At low pressures, the
viscosity trend deviates from the Π2 scaling. We con-
jecture that this deviation is associated with the kinetic
contribution to the viscosity [4, 32], which is associated
with atom velocity, insensitive to Π, and dominates in the
dilute limit (see SI). Collectively, our findings, which are
made possible by SALSA, suggest that even the Brow-
nian contribution to the colloidal viscosity can have a

distinct transport mechanism than that in simple liquids.
In conclusion, we measure the stress fluctuation in

colloidal liquids with SALSA, and use the well-known
Green-Kubo relation to determine the viscosities of qui-
escent suspensions [1, 2]. Our measurements essentially
show that “as far as linear responses are concerned,
the admittance is reduced to the calculation of time-
fluctuations in equilibrium” [1]. Previous pioneering ex-
periments were able to combine the Green-Kubo relation
with numerical simulations to extract the viscosity of a
2D dusty plasma [52]. These measurements, however, re-
lied on assumptions for the interparticle potentials and
ignored power-law decays in the stress correlation char-
acteristic of 2D systems, which are known to lead to di-
verging integrals [53–55]. The analysis presented here
avoids many of these complications and opens the door
to further investigations of stress distributions in liquids
under shear, confinement, and at high densities where
the suspension becomes glassy [56–58]. In such situa-
tions SALSA is still applicable since the solvent remains
in equilibrium. More importantly, since the SALSA mea-
surement is non-invasive, it also allows for probing the
mechanical heterogeneity in a 3D colloidal glass [59–65],
in which we can perform a time-average for particle-scale
stress calculation. Measuring the temporal and spatial
stress fluctuations in such a system will shed light on the
generalization of the Green-Kubo relation in far-from-
equilibrium systems and elucidate the mechanisms that
underly the flow behaviors of disordered systems.
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