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Some time-reversal symmetric topological orders are anomalous in that they cannot be realized
in strictly two-dimensional systems; instead, they can only be realized on the surface of three-
dimensional symmetry-protected topological phases. We propose two quantities, which we call
anomaly indicators, that can detect if a time-reversal symmetric topological order is anomalous in
this sense. Both anomaly indicators are expressed in terms of the quantum dimensions, topological
spins, and time-reversal properties of the anyons in the given topological order. The first indicator,
η2, applies to bosonic systems while the second indicator, ηf , applies to fermionic systems in the
DIII class. We conjecture that η2, together with a previously known indicator η1, can detect the
two known Z2 anomalies in the bosonic case, while ηf can detect the Z16 anomaly in the fermionic
case.

A useful way to characterize two-dimensional (2D)
gapped quantum many-body systems is in terms of the
properties of their anyon excitations. For systems with
global symmetries, one can study both topological and
symmetry properties of anyons. These properties are said
to describe the symmetry-enriched topological (SET) or-
der in the many-body system[1–6].

An interesting aspect of SET orders is that some of
them cannot be realized in strictly 2D systems[7]. In-
stead, they can only be realized on the surfaces of 3D
symmetry-protected topological (SPT) phases — gen-
eralizations of the famous topological insulators[8–10].
SET orders of this kind are said to be anomalous [11].
More quantitatively, one can define an anomaly associ-
ated with each SET which takes values in the Abelian
group that classifies the corresponding 3D SPT phases
(see examples below). This anomaly carries the infor-
mation of which 3D SPT phase can host the SET on its
surface[12].

Given that the anomaly associated with each SET
tells us which types of physical systems can realize it,
it is desirable to have general formulas for determin-
ing these anomalies. Such formulas have been found for
large classes of SETs with unitary symmetries[5, 13–17].
However, they are generally lacking for SETs with anti-
unitary symmetries like time reversal invariance; in the
latter case, anomalies have mostly been determined only
for specific examples of SETs, and even then their calcu-
lation is difficult and involves finding models that realize
the SET on the surface of a known SPT phase[18–22].

In this work, we propose general anomaly formulas for
the simplest class of time-reversal symmetric SETs —
namely those whose only symmetry is time-reversal in-
variance. We consider both bosonic and fermionic sys-
tems. In the bosonic case, it is known that there are four
time-reversal symmetric 3D SPT phases (including the
trivial phase) which are classified by the group Z2 × Z2

[7, 10, 23, 24]. Hence each time-reversal symmetric SET

is associated with a Z2 × Z2-valued anomaly. Equiva-
lently, each SET is associated with two types of anoma-
lies, each taking values in Z2 = {±1}. One of these two
time-reversal anomalies (T anomalies) has been under-
stood previously and is known to be given by the formula

η1 =
1

D

∑

a∈C

d2ae
iθa , (1)

where C denotes the set of anyons in the SET, θa and
da are the “topological spin” and “quantum dimension”
of the anyon a, and D =

√
∑

a d
2
a is the “total quantum

dimension” (see Ref. 2 for definitions). As a Z2 anomaly
indicator, η1 has two properties: (1) it only takes the
values ±1 for any time-reversal symmetric SET and (2)
if η1 = −1, the SET is anomalous[25].
The indicator η1 is very useful but unfortunately no

analogous quantities have been found for other types of
T anomalies. In this work we propose two such anomaly
indicators: (i) η2, which detects the second type of Z2 T

anomaly in bosonic systems, and (ii) ηf , which detects
the Z16 T anomaly in fermion systems with T 2 = −1.
While we are not able to prove that η2 and ηf are
anomaly indicators in the same sense as η1, we will pro-
vide evidence to this effect.
Second anomaly indicator for bosonic systems.—We

propose that the second Z2 T anomaly for bosonic topo-
logical orders can be detected by the following indicator:

η2 =
1

D

∑

a∈C

daT 2
a e

iθa (2)

Like η1, we conjecture that η2 can only take the values
±1, and if η2 = −1, the SET is anomalous.
In Eq. (2), we have introduced a new quantity, T 2

a .
Defining it requires two steps. First, recall that the
time reversal operator T can permute different species of
anyons. We denote this permutation by a → T (a). Next,
consider the subset of anyons satisfying T (a) = a, i.e. the
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anyons that are invariant under the T permutation. In-
variant anyons can be divided into two classes: those that
carry a two-fold time-reversal protected Kramers degen-
eracy, similar to that of a spin-1/2 electron, and those
that do not carry such a degeneracy (for a precise defi-
nition, see Ref. 26). We will say that an invariant anyon
a is a Kramers doublet if it belongs to the first class and
a Kramers singlet otherwise. With this terminology, we
define the quantity T 2

a as follows:

T 2
a =











1, if T (a) = a, and Kramers singlet

−1, if T (a) = a, and Kramers doublet

0, if T (a) 6= a

(3)

It is worth mentioning that there are physical con-
straints on the T permutation and T 2 assignments which
hold for all SETs whether or not they are anomalous.
Here, we list several constraints that will be useful in
our later discussion. One example is that the topological
spins must satisfy θT (a) = −θa since T is anti-unitary.
Accordingly, all invariant anyons must have θa = 0 or π.
Another constraint is that T cannot permute the trivial
anyon 1, i.e. T (1) = 1. In addition, the trivial anyon
must be a Kramers singlet, that is, T 2

1 = 1. Likewise,
permuting an anyon twice should be trivial, so we have
T [T (a)] = a. Lastly, in the case of Abelian topologi-
cal orders, both the T permutation and T 2 assignments
must respect fusion rules in the sense that

T (a)× T (b) = T (a× b), T 2
a T 2

b = T 2
a×b (4)

where “×” stands for the fusion product, and the second
equation holds only for invariant anyons. Note that the
above list is not exhaustive; for a more general discussion
of constraints, see Ref. 5.
Example.—As an example, let us evaluate η2 for

the well-known toric-code topological order[27]: C =
{1, e,m, ǫ}. Here, 1 is the trivial anyon, e and m are
bosons, and ǫ is a fermion. All the anyons are Abelian,
i.e., da = 1 for every a ∈ C. Accordingly, the total quan-
tum dimension is D = 2. Consider the case that T does
not permute anyons. Then, there are four possible T 2

assignments: T 2
e = γe and T 2

m = γm, with γe, γm = ±1
respectively. The trivial anyon must have T 2

1 = 1, and
the fermion ǫ must have T 2

ǫ = γeγm. The latter follows
from the fusion rule e × m = ǫ and the constraint (4).
Inserting the above information into (2), we obtain

η2 =
1

2
(1 + γe + γm − γeγm) (5)

We observe that η2 = −1 if γe = γm = −1 while η2 = 1
otherwise. This agrees with expectations[24]: the first
case corresponds to the so-called “eTmT” SET, which is
believed to be anomalous, while the other three cases are
known to be non-anomalous, i.e. realizable in strictly 2D
systems.

Evidence.—We now discuss the evidence for our con-
jecture about η2.
(1). We have checked that η2 = 1 for three large

classes of strictly 2D systems: (i) Kitaev’s exactly sol-
uble quantum double models with arbitrary finite group
G and with T acting like complex conjugation[27]; (ii)
double-layer topological orders B × B̄, where B is an ar-
bitrary bosonic topological order and B̄ is the time rever-
sal partner of B, and the two layers are exchanged un-
der T permutation;[28] and (iii) Abelian topological or-
ders described by K-matrix theory, discussed in Ref. 26.
We discuss details of (i) and (ii) in the Supplementary
Material[29], and (iii) can be analyzed straightforwardly
using the formula (6) given below.
(2). We have checked that η2 = −1 for several systems

that are believed to be anomalous. Examples that we
considered include (i) the eTmT state discussed above,
(ii) the (T-Pfaffian)− state, and (iii) four copies of the
semion-fermion theory. While the latter two examples
are fermionic systems — in fact, they correspond to SETs
that live at the surface of 3D topological superconductors
[30, 31] — they have bosonic counterparts that can be
constructed by gauging fermion parity symmetry. Our
calculation is for these bosonic counterparts. We present
this calculation in the case of the (T-Pfaffian)− state in
the Supplementary Material[29]; the example (iii) can be
treated in a similar fashion.
(3). We have checked that η2 is multiplicative under

stacking of topological orders. To see this, consider two
bosonic topological orders C and C′, with total quantum
dimensions D and D′ respectively. In the stacked system
C ⊗ C′, anyons are labeled by (a, a′) with a ∈ C and
a′ ∈ C′. One can see that d(a,a′) = dada′ , θ(a,a′) = θa +
θa′ , and the total quantum dimension of C ⊗ C′ is DD′.
Also, (a, a′) is invariant under the T permutation if and
only if both a and a′ are invariant, and T 2

(a,a′) = T 2
a T 2

a′ .

Putting this all together it follows that η2 (as well as η1)
is multiplicative under stacking. To see why this result
is consistent with expectations, recall that 3D bosonic
SPT phases with time reversal symmetry form a Z2 ×
Z2 group under stacking. Therefore, we expect that the
indicators (η1, η2) should also form a Z2×Z2 group under
stacking. In particular, η1, η2 should be multiplicative
under stacking, as we just verified.
(4). In the case of Abelian topological orders, we

have checked that η2 does not change under a large
class of topological phase transitions, namely those aris-
ing from anyon condensation[32] (see Supplementary
Material[29]). To understand why this property supports
our conjecture, note that anomalies can be thought of
as properties of 3D bulk phases whose surfaces support
anomalous SETs. On the other hand, topological phase
transitions can be thought of as occurring on the surface.
Since surface phase transitions cannot change bulk prop-
erties, anomaly indicators must be invariant under such
transitions.
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Alternative formula for η1η2.— In order to describe
some additional evidence for our conjecture, we now dis-
cuss an alternative formula for the product indicator
η1η2. This formula is not as general as (1) and (2) and
only applies to the case of Abelian topological orders. It
states that η1η2 can be computed as[33]

η1η2 = eiθa (6)

where a is any anyon that obeys

eiθa,b = T 2
b for all b ∈ I (7)

Here I denotes the set of anyons that are invariant under
the T permutation and θa,b denotes the mutual statistics
between a and b.
Before we derive Eq. (6), let us discuss its implications.

First, we can use it to show that η2 can only take the
values +1 or −1: to see this, note that Eq. (6) implies
that η2 has unit modulus. The claim then follows from
the observation that η2 is real.
Another interesting aspect of the formula (6) is that

if we restrict to the case where T does not permute any
anyons, then Eq. (6) agrees with the more specialized
time reversal anomaly formula conjectured in Ref. 13.
We now turn to the justification of Eq. (6). We need

to establish three points: (i) there always exists at least
one anyon a satisfying Eq. (7); (ii) if there exists multiple
a’s satisfying Eq. (7), then they all share the same topo-
logical spin; and (iii) the expression for η1η2 in Eq. (6)
agrees with Eqs. (1)-(2). We prove the first two points in
the Supplementary Material[29]. Here we will focus on
the last point. To this end, we multiply Eqs. (1) and (2)
together and rewrite the resulting expression:

η1η2 =
1

D2

∑

c

d2ce
iθc

∑

b

dbT 2
b e

−iθb

=
1

D2

∑

abc

eiθc−iθbNa
bcdadcT 2

b

=
1

D

∑

a

nadae
iθa , na =

∑

b

sabT 2
b (8)

Here, the first equality follows from the fact that η2 is
real; the second equality follows from dbdc =

∑

a N
a
bcda;

the third equality follows from the identity Na
bc = N ā

b̄c̄
=

N c
ab̄

together with the definition of the topological S-

matrix[2]: sab =
1
D

∑

c N
c
ab̄
eiθc−iθa−iθbdc.

So far, our computation of η1η2 is completely gen-
eral. If we specialize now to the Abelian case, then
sab = e−iθa,b/D. Using the fact that both {T 2

b }b∈I and
{eiθa,b}b∈I define one-dimensional representations of the
subgroup I, we find that na = |I|/D if a is a solution
to (7) and na = 0 otherwise. Next, substituting na into
(8) and using property (ii) listed above, we deduce that
η1η2 = N |I|eiθa/D2 where a is any solution to (7) and
N is the number of such solutions. At the same time, it

is not hard to show that N = D2/|I|. Eq. (6) follows
immediately.
Anomaly indicator for fermionic systems.—We now

consider time-reversal symmetric SETs in interacting
fermionic systems with T 2 = −1 (i.e., DIII class). The T-
anomaly for these SETs takes values in Z16, correspond-
ing to the Z16 classification of 3D topological supercon-
ductors of DIII class.[30, 31, 34, 35] We propose that this
Z16 T anomaly is detected by the following indicator:

ηf =
1√
2D

∑

a∈Cf

daT̃ 2
a e

iθa (9)

We conjecture that ηf can take 16 different values, eiπν/8

with ν = 0, 1, . . . , 15, and that the SET is anomalous if
ηf 6= 1.
Let us explain the expression (9). First of all, an essen-

tial difference between fermionic and bosonic topological
orders is the existence of a local fermion f in fermionic
topological orders, which has trivial mutual statistics
with all anyons and satisfies the fusion rule f × f = 1.
We use Cf to denote the set of all anyons, including f .
Anyons in Cf always come in pairs, {a, a × f} where a
and a× f have topological spins that differ by π.
In Eq. (9), we have introduced a new quantity T̃ 2

a . To
define it, we first introduce a related quantity:

T 2
a =























1, if T (a) = a, and Kramers singlet

−1, if T (a) = a, and Kramers doublet

±i, if T (a) = a× f

0, otherwise

(10)

(We will explain how to determine the signs in the ±i’s
below). With this definition, T̃ 2

a is given by:

T̃ 2
a =

{

−iT 2
a , if T (a) = a× f

T 2
a , otherwise

(11)

Here, the minus sign in the −i in (11) is simply a matter
of convention. In this convention, the surface of a DIII-
class topological superconductor with index ν carries an
anomaly ηf = eiνπ/8. If instead we used +i in (11),
the indicator defined through (9) would be the complex
conjugate of ηf in the current convention.
We now explain how the ±i’s in (10) are assigned.

This is subtle because when T (a) = a× f , time reversal
symmetry guarantees that a and a × f are degenerate
in energy. Thus, a and a × f always form a doublet.
Nevertheless, previous work has shown that the anyons
obeying T (a) = a × f , can be divided into two classes
which can be assigned the values T 2

a = i and T 2
a = −i

respectively.[30, 31] Unlike Kramers doublets/singlets,
the physical distinction between anyons with T 2

a = ±i
is subtle, and the assignments depend on a sign conven-
tion; however, once a convention has been fixed, the T 2

assignments are unambiguous.[31]
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As in the bosonic case, the T permutation and T 2

assignments must satisfy certain constraints. In particu-
lar, the relation θT (a) = −θa implies that the invariant
anyons must have topological spin θa = 0 or π while the
anyons with T (a) = a × f must have θa = ±π/2. Also,
the trivial anyon 1 and the local fermion f must be in-
variant under the T permutation, and must have T 2

1 = 1
and T 2

f = −1. Lastly, in the case of Abelian topological
orders, there are constraints similar to Eq. (4). How-
ever, instead of T 2

a , it is T̃ 2
a that satisfies the relation

T̃ 2
a T̃ 2

b = T̃ 2
a×b, for all nonzero T̃ 2

a ’s.[30, 31]
Examples.—Let us evaluate ηf for two examples. Our

first example is the so-called semion-fermion (SF) topo-
logical order. This system contains four Abelian anyons
{1, f, s, s̄}, where s is a semion with θs = π/2, and
s̄ = s× f is an anti-semion with θs̄ = −π/2. The T per-
mutation takes T (s) = s̄ and T (s̄) = s. As for the T 2 as-
signments, we have T 2

f = −1, and T 2
1 = 1 while there are

two possibilities for T 2
s and T 2

s̄ , namely T 2
s = −T 2

s̄ = iσ,
with σ = ±1. These two possibilities correspond to two
types of semion-fermion topological orders known as SF+

and SF−. Inserting this information into (9) and using
the definition (11) gives

ηf
∣

∣

SFσ
= eiσπ/4 (12)

This agrees with previous work which has argued that
the SF+ and SF− topological orders are anomalous and
live on the surfaces of ν = 2 and ν = 14 topological
superconductors, respectively[30, 31].
Our second example is the SO(3)6 topological

order[30]. This theory also contains four anyons
{1, f, s, s̄}, with θs = π/2 and θs̄ = −π/2. The anyons s
and s̄ are non-Abelian with ds = ds̄ = 1 +

√
2. The T

permutation is the same as in the semion-fermion topo-
logical order, and like that case there are two variants of
SO(3)6 with T 2

s = −T 2
s̄ = ±i. We will refer to these two

possibilities as SO(3)6,+ and SO(3)6,−. Substituting this
data into (9), we obtain

ηf
∣

∣

SO(3)6,σ
= eiσ3π/8 (13)

where σ = ±1. Previous work has argued that the
SO(3)6,± topological orders are anomalous and live on
the surfaces of topological superconductors with odd in-
dex ν, but the values of ν have not been determined[30].
Our conjecture reveals these values: it implies that the
SO(3)6,+ topological order lives on the surface of a ν = 3
topological superconductor, while SO(3)6,− lives on the
surface of a ν = 13 topological superconductor.
Evidence.—We now turn to the evidence for our con-

jecture about ηf .
(1). We have checked that ηf = 1 for three large classes

of strictly 2D fermionic topological orders. The first two
classes are obtained by taking the 2D bosonic systems
that we discussed earlier — namely (i) Kitaev’s quantum
double models and (ii) double layer bosonic topological

orders of the form B × B̄ — and stacking them with a
fermionic atomic insulator. The third class consists of
(iii) all fermionic Abelian topological orders described
by K-matrix theory[26]. Actually, the fact that ηf = 1
for classes (i) and (ii) follows immediately from our pre-
vious result that η2 = 1 for the corresponding bosonic
systems, since it is easy to show that ηf = η2 for any
fermionic system obtained by stacking a bosonic system
with an atomic insulator. As for class (iii), these systems
can be analyzed via an alternative formula for ηf , sim-
ilar to (6). This alternative formula is discussed in the
Supplementary Material [29].
(2). We have checked that ηf 6= 1 for several sys-

tems that are believed to be anomalous, including the
(T-Pfaffian)− state, N copies of the semion-fermion state
(N /∈ 8Z), and N ′ copies of the SO(3)6 state (N ′ /∈
16Z)[19–22, 30, 31]. On the other hand, we have checked
that ηf = 1 for the Moore-Read×U(1)−2 state, T96 state,
and (T-Pfaffian)+ state from Refs. 19–22, 30, and 31.
This agrees with expectations since the latter topologi-
cal orders are believed to be realizable in strictly 2D.
(3). We have checked that ηf is multiplicative under

stacking of topological orders.
(4). For the case of Abelian topological orders, we

have checked that ηf does not change under any topo-
logical phase transition arising from anyon condensation
(see Supplementary Material[29]).
Discussion.—To sum up, we propose two quantities, η2

(2) and ηf (9), for detecting anomalies in time-reversal
symmetric bosonic SETs and DIII-class fermionic SETs,
respectively. Our proposal remains a conjecture. One
possible approach to prove our conjecture would be to
construct, for each SET, a corresponding 3+1D topo-
logical field theory that supports the SET on its 2+1D
boundary. If the SET is not anomalous then the parti-
tion function of this 3+1D theory should equal 1 for every
closed spacetime manifold. Thus, if one could show that
the partition function on some (non-orientable) closed
manifold is equal to η2 or ηf , then our conjecture would
follow[36, 37]. Another possible approach would be to in-
vestigate η2 and ηf in the context of 1+1D conformal field
theory (CFT). Indeed, the relation η1 = ei2πc−/8, which
underlies the η1 anomaly, was first proven in CFT[2, 38].
Hence, it seems plausible that relations analogous to
η2 = 1 or ηf = 1 can also be derived in the context
of time-reversal symmetric CFT.
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