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I conjecture a high-temperature/low-temperature duality for conformal field theories defined on
circle fibrations like S3 and its lens space family. The duality is an exchange between the thermal
circle and the fiber circle in the limit where both are small. The conjecture is motivated by the fact
that π1(S3/Zp→∞) = Z = π1(S1 × S2) and the Gromov-Hausdorff distance between S3/Zp→∞ and
S1/Zp→∞ × S2 vanishes. Several checks of the conjecture are provided: free fields, N = 1 theories
in four dimensions (which shows that the Di Pietro-Komargodski supersymmetric Cardy formula
and its generalizations are given exactly by a supersymmetric Casimir energy), N = 4 super Yang-
Mills at strong coupling, and the six-dimensional N = (2, 0) theory. For all examples considered, the
duality is powerful enough to control the high-temperature asymptotics on the unlensed S3, relating
it to the Casimir energy on a highly lensed S3. Such large-order quotients are more generally useful
for studying quantum field theory on curved spacetimes.

INTRODUCTION

The torus has a nontrivial discrete symmetry group
SL(d,Z) which can be used to constrain conformal field
theories (CFTs) placed on such a background. As a sam-
ple, this symmetry has provided formulas for the asymp-
totic density of states (d ≥ 2) [1–3], monotonicity and
sign constraints on the torus vacuum energy (d > 2)
[2, 4], upper bounds on the gaps (above the vacuum)
of scaling dimensions and charges of primary operators
(d = 2) [5–7], and constraints on operator product ex-
pansion coefficients (d = 2) [8].

The thermal partition function of a CFT on Sd−1 is
computed by placing the theory on S1 × Sd−1. This is a
natural object to consider since states of a CFT on Sd−1

are in one-to-one correspondence with the local operators
of the theory. In this case there is no general modular
property of the theory on S1 × Sd−1 that is known. The
special power of a torus is that it is made of circles, and
it is the Hamiltonian interpretation that such a circle ad-
mits that allows for distinct-looking but fundamentally
equivalent quantizations. In this work we will consider
circle fibrationsMd−1, which are spaces with a free circle
action at every point over some base space Md−2. This
is often denoted S1 −→ Md−1 −→ Md−2, and typical
examples include odd-dimensional spheres, e.g. S3 is a
circle fibration over S2. Here we argue that a general
circle fibration with a freely acting U(1) can be highly
quotiented (we will often say “lensed”) into approximat-
ing S1×Md−2. There is an emergent circle and the ther-
mal partition function on S1/Zk ×Md−1/Zp inherits an
SL(2,Z) invariance when k and p are large with arbitrary
ratio. This allows us, for example, to lens the S1 × S3

partition function into a T2 × S2 partition function (see
figure 1). This then connects the local operator content
of the theory – in a precise and quantifiable way – to the
T2 × S2 partition function, which admits the aforemen-

FIG. 1: A series of approximate equivalences motivating
the conjecture in the case of a lens space partition function.
More generally, we can replace S3/Zk with a smooth man-
ifold Md−1/Zk. In all cases considered in this paper, the
results can be analytically continued to p = 1 and give a cor-
rect equality between the high-temperature partition function
on the unlensed manifold and the low-temperature partition
function on a highly lensed manifold.

tioned powerful modular symmetry. Interestingly, in all
examples considered in this paper the stronger equality

Z[S1/Zk ×Md−1] ≈ Z[S1 ×Md−1/Zk] (1)

is true, which lets us relate e.g. the high-temperature
theory on an unlensed S3 to the low-temperature theory
on a highly lensed S3 (here low temperature means β
large compared to the lensed Hopf fiber of the S3). The
rest of this section introduces these ideas in the context
of Md−1 = S3.

To unambiguously define the partition function of a
CFT on a manifold Md, we often need additional re-
quirements. In the case of a two-dimensional CFT on
T2 = S1

β × S1
L we impose invariance under SL(2,Z),

which forces operators to have integer spin and implies
a high-temperature/low-temperature duality Z(β/L) =
Z(L/β). For higher-dimensional CFTs on Td the analog
is invariance under SL(d,Z). The question of whether
high-temperature/low-temperature dualities of this na-
ture extend to CFT partition functions on S1

β ×S
d−1
R for
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d > 2 has been discussed [9] since the case of d = 1 was
understood [1]. While free fields have certain properties
under modular transformations [10], there is no general
behavior.

When doing thermal physics modular invariance is an
invariance under swapping a thermal cycle with a spa-
tial cycle. Odd-dimensional spheres can be understood
as circle bundles, so there is an appetizing S1

L that one
cannot help but try to swap with the thermal S1

β . For
β = 2π/p for some positive integer p, this would mean
that the sphere partition function at some temperature
would be related to the lens space partition function at
some other temperature. This is not true in general.
However, the conjecture of this paper is that it is true
asymptotically as the two cycles shrink to zero size. In
other words, we have

lim
k→∞
p→∞

Z
[
S1
2π/k × S

3/Zp
]

= lim
k→∞
p→∞

Z
[
S1
2π/p × S

3/Zk
]
(2)

for positive integer k, p. The partition function often
diverges exponentially in k or p in this limit, so the proper
equality is stated in terms of a k- or p-normalized free
energy logZ, which in the case of successive limits can
be normalized as

lim
p→∞

p lim
k→∞

1

k3
logZ

[
S1

2π
k
× S3/Zp

]
(3)

= lim
p→∞

p lim
k→∞

1

k3
logZ

[
S1

2π
p
× S3/Zk

]
(4)

but we will henceforth leave this implicit. The equality is
meant to hold independent of precisely how we take the
limit, i.e. for arbitrary ratio p/k, but the normalization
in such a double-scaling limit may be theory-dependent.

How can we justify such an equivalence? In the case
of lens spaces, for any finite lensing the two manifolds
are not related by a large diffeomorphism. So the natu-
ral guess is that the conjectured equivalence will not be
true at any finite lensing, which we will see is correct in
concrete examples. But the conjecture is meant only to
hold in the limit of infinite lensing. Notice that some-
thing special is happening in the limit: π1

(
S3/Zp→∞

)
=

Zp→∞ = Z = π1(S1), so it seems that there is an emer-
gent circle justifying the cycle-swapping invariance that
would make (2) and its generalizations true. The trivial
fibration S1/Zp × S2 = S1

2π/p × S2 and the nontrivial

fibration S3/Zp become isometric as p → ∞, a notion
which we now make precise.

Consider the Gromov-Hausdorff distance dGH , which
measures distances between two metric spaces by min-
imizing over all Hausdorff distances between all possi-
ble isometric embeddings of the two metric spaces. In
general this is a pseudometric, but since we will be con-
sidering compact metric spaces, the distance vanishes if
and only if the two spaces are isometric [11]. In partic-

ular this means that the two spaces under consideration
are diffeomorphic. Both the lens space M1(p) = S3/Zp
and M2(p) = S1

2π/p × S2 converge to M3 = S2 as
p → ∞ in the Gromov-Hausdorff sense. This is famil-
iar from dimensional reduction in physics, and is an ex-
ample of collapse with bounded curvature in mathemat-
ics. This means that dGH(M1(p → ∞),M3) = 0 and
dGH(M2(p → ∞),M3) = 0. But by the triangle in-
equality we therefore have

lim
p→∞

dGH(S1
2π/p × S

2 , S3/Zp) = 0 , (5)

meaning the two spaces become isometric as p becomes
large. In particular, for any distance ε, we can pick a
sufficiently large p such that

dGH(S1
2π/p × S

2, S3/Zp) < ε . (6)

Since the spaces become isometric in the limit of infinite
p, this motivates the series of equalities in the limit of
large p and large k represented in figure 1. While an exact
isometry between two spaces implies they are homeomor-
phic, two spaces separated by arbitrarily small Gromov-
Hausdorff distance can still be very different topological
spaces. For example we can replace the lens space in
figure 1 with a squashed (Berger) sphere S3

ν . This one
parameter family of solutions also collapses to an S2 as
ν → 0, motivating the equalities discussed above. How-
ever, π1(S3

ν) = 0 for all ν, meaning it maintains distinct
topological properties as ν is varied and there is not as
precise a notion of an “emergent circle.”[38]

These arguments suggest that the lens space partition
function at high temperature and large lensing inherits
the mapping class group of the T2×S2 partition function.
This justifies the cycle-swapping equivalence conjectured
in (2). (But notice that it does not provide a justification
for the stronger equality (1)).

The conjecture of this work can be stated more gener-
ally as an invariance under swapping the thermal cycle
with the cycle of any manifold Md−1 that can be writ-
ten as a circle bundle with a (possibly locally) freely act-
ing U(1), which allows lensing the cycle in Md−1 to be-
come arbitrarily small and induce collapse toMd−2. The
size of the emergent S1 is set by Vol(S1/Zp ×Md−2) =
Vol(Md−1/Zp). Altogether, the requirement for replac-
ing Md−1/Zp with S1/Zp ×Md−2 will be that the two
spaces become isometric and have the same fundamental
group as the lensing is taken large.

A subtle point about this equivalence is that it will
imply that the high-temperature partition function is
equal to a low-temperature partition function. The
high-temperature partition function defines a scheme-
independent thermal entropy, while the low-temperature
partition function depends on the vacuum energy. As is
well known, the vacuum energy on curved manifolds is
generically scheme-dependent in even-dimensional CFT.
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What gives? The resolution to this is that the vacuum
energy becomes scheme-independent as the fiber cycle is
taken small. In this case, the contribution of any scheme-
dependent counterterm goes to zero. This is general and
independent of supersymmetry.

Taking the order of a quotient to be infinitely large
as a control parameter does not seem to have received
much (if any) attention in the literature. This note will
show that it provides nontrivial constraints at zeroeth
order in perturbation theory around the infinite quotient,
with the potential to go to higher orders. For a distinct
application of infinite quotients see [12].

Related work includes [13–16].

FOUR DIMENSIONS

Conformally coupled scalar

Consider a conformally coupled scalar at inverse tem-
perature β = 2π/k on a lens space S3

R/Zp with radius R.
This space has volume V = 2π2R3/p. At high tempera-
ture β3/V � 1 we have[39]

lim
k/p→∞
p→∞

logZ
[
S1
2π/k × S

3
R/Zp

]
=

π4R3

45p(2π/k)3
=
πk3R3

360p

(7)
Swapping the thermal cycle with the fiber cycle gives us
a low-temperature partition function on a different lens
space, for which we have

lim
k/p→∞
p→∞

logZ
[
S1
2πR/p × S

3
R/ZkR

]
= −

(
2πR

p

)(
−k

3R3

720R

)

=
πk3R3

360p
. (8)

The above expression illustrates that the low-
temperature partition function projects to the vacuum
state with energy that becomes scheme-independent as
k →∞:

Evac, S3
R/ZkR =

14− 10(kR)2 − (kR)4

720R(kR)
−→ −k

3R3

720R
(9)

The expressions above are straightforward to calculate
and can be found for example in [17]. We see that the
two expressions are equal as predicted by the conjecture.
For the rest of the checks, we will not keep the radius of
the lens space explicit.

N = 1 superconformal theories and Di
Pietro-Komargodski formula

In [18], asymptotic Cardy-like formulas for supersym-
metric partition functions in four and six dimensions were
proposed (see also [19, 20] for early conjectures in this
direction). Here we will focus on the case of N = 1
superconformal theories in four dimensions. Supersym-
metry will be preserved so the “thermal” S1 will have
non-thermal periodicity conditions that match those of
the Hopf fiber.

We consider the case of a squashed lens space, a gener-
alization of [18] treated in [21]. The squashed sphere we
are lensing is also known as a Berger sphere. The Berger
sphere metric can be written as

ds2 =
1

4

(
dθ2 + sin2 θ dφ2 + ν2 (dψ + cos θ dφ)

2
)

(10)

where ψ ∼ ψ + 4π. The ν = 1 point is the unit three-
sphere. The high-temperature supersymmetric partition
function is given as

lim
k/p→∞
p→∞

logZ
[
S1
2πν/k × S

3
ν/Zp

]
= −8πk

3p
(a− c) . (11)

The thermal circle is normalized to match the size of the
emergent circle in the lens space when k = p. The size
of the emergent circle is fixed by the volume condition
discussed in the introduction, i.e. equating Vol[S3

ν/Zp] =
Vol[S1 × S2] for S2 with radius 1/2 sets the size of the
emergent S1 to be 2πν/p. The supersymmetric vacuum
energy on a lensed Berger sphere S3

ν/Zk is given as [22]

Esusy, S3
ν/Zk =

16

27kν
(3c− 2a) +

4k

3ν
(a− c) . (12)

Unlike the previous section, this vacuum energy is mani-
festly scheme-independent for arbitrary fiber size, thanks
to supersymmetry. The low-temperature partition func-
tion is given by the supersymmetric vacuum energy
through a projection to the ground state:

lim
k/p→∞
p→∞

logZ
[
S1
2πν/p × S

3
ν/Zk

]
= −

(
2πν

p

)(
4k

3ν

)
(a−c) .

(13)
As advertised, the high-temperature partition function
on a given squashed lens space (11) equals the low-
temperature partition function on a different squashed
lens space (13). Notice that it was crucial that the limit
k →∞ picked out the second etrm in (12).

It is somewhat surprising that the equivalence holds
at O(k) for supersymmetric partition functions, since for
non-supersymmetric partition functions – which have an
extensive leading term O(k3) – we will see in upcoming
sections that the equivalence fails at O(k) (we did not
calculate the conformally coupled scalar to this order to
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see disagreement). Thus, agreement at O(k) seems spe-
cial to supersymmetric partition functions.

We also see from the above results that the large
squashing limit ν → 0 (where we do not put a factor
of ν in the size of the thermal circle now), which also
collapses the spatial manifold to S2, does not give an ap-
propriate modular equivalence since it does not isolate
the second term in (12). In particular, Z[S1

2π/k × S
3
ν ] 6=

Z[S1
2πν × S3

k−1 ] at large k and small ν, except for the
trivial case ν = k−1. Presumably the approach to equiv-
alence of fundamental groups as the manifold collapses
is important for supersymmetric free energies but not as
important for extensive free energies.

A similar check, not included here, can be performed
for the theory on an ellipsoidal lens space, where the el-
lipsoid preserves a U(1)×U(1) isometry of S3, as opposed
to the SU(2)× U(1) preserved by the Berger sphere.

Notice that the duality is powerful enough to control
the high-temperature partition function on an unlensed
S3
ν (which in the case of a round S3 is counting local

operators that sit in short representations of the super-
conformal group), equating it with the low-temperature
partition function on a highly lensed S3

ν . Also notice
that the superconformal index, which is shifted from the
supersymmetric partition function by a vacuum energy
factor eβEsusy , would not exhibit nice modular properties.
This precisely mimics the case of modular invariance in
two-dimensional CFTs, where the shift of operator di-
mensions by −c/12 is necessary to exhibit modular in-
variance.

N = 4 super Yang-Mills at weak coupling

Now consider N = 4 SU(N) super Yang-Mills theory
at weak ’t Hooft coupling. The relevant partition func-
tions and vacuum energies we will use in this section have
been calculated in [23].

For the NS-NS partition function, which corresponds
to antiperiodic periodicity conditions for the fermions
along the thermal cycle and the fiber cycle (requiring
k to be even), we have

lim
k/p→∞
p→∞

logZ
[
S1
2π/k × S

3/Zp
]

=
πN2k3

24p
, (14)

lim
k/p→∞
p→∞

logZ
[
S1
2π/p × S

3/Zk
]

= −2π

p
E

(NS)
vac, S3/Zk =

πN2k3

24p
.

(15)

N = 4 super Yang-Mills at strong coupling

We can also check the conjecture at strong coupling
using the AdS/CFT correspondence. In fact, for this

case we will be able to illustrate modular S-invariance at
intermediate temperatures since we will have access to
log Z as a function of arbitrary k and p. This requires
using the proposed phase structure on S1

2π/k × S3/Zp,
with antiperiodic fermions along both cycles, for which
there is strong evidence but no proof. The bulk phase
structure has two saddles, the thermal Eguchi-Hanson-
AdS (EH) metric representing the confined phase and
the AdS-Schwarzschild/Zp black hole (BH) representing
the deconfined phase. We can test the proposed modu-
lar invariance at medium temperatures due to the exact
expressions available for the on-shell actions. At large k
and p, independent of how we take the limit (i.e. inde-
pendent of exactly what ratio of powers of k to p we keep
fixed), we have

logZBH =
π2k3

64pG
− 3π2k

16pG
+O

(
1

kp

)
, (16)

logZEH =
π2p3

64kG
− π2p

8kG
+O

(
1

kp

)
. (17)

As advertised, the leading order answer is invariant under
swapping k ↔ p, since this maps us from the confined
(deconfined) to the deconfined (confined) phase, leaving
the partition function invariant. Notice that the first
subleading correction ruins this invariance, illustrating
the necessity of the limit. As required by modularity,
the phase transition at large p occurs at k = p. This
is just like the BTZ/thermal AdS3 transition, which by
modularity necessarily occurs when the thermal cycle size
equals the spatial cycle size.

SIX DIMENSIONS

N = (2, 0) theory on circle fibration over S2 × S2

We can test the conjecture for the strongly coupled
N = (2, 0) theory. Here we consider supergravity in
AdS7 with asymptotic topology S1 ×M5/Zp. We will
consider M5 to be a circle fibration over S2 × S2. We
again have two competing saddles, a black hole solution
representing the deconfined phase and a solitonic solution
representing the confined phase. The relevant solutions
and the transition between the two saddles were devel-
oped in [24–26]. Taking the large p and large k limit,
again in any order, gives us

logZBH =
π3k5

1296p
− 5π3k3

324p
+O

(
k

p

)
) , (18)

logZEH =
π3p5

1296k
− π3p3

108k
+O

(p
k

)
. (19)

This has the proposed k ↔ p invariance at leading order,
and we again see that it is violated at first subleading
order. The phase transition between saddles occurs at
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p = k as required by modularity. This context and that of
N = 4 in the last section have phase structures that can
be predicted (at large k and p) using modular invariance
and center symmetry arguments as explained in [27].

OUTLOOK

In the context of odd-dimensional spheres, the con-
jecture of this work relates sphere partition functions to
torus partition functions. This allows the use of modular
invariance while maintaining an interpretation in terms
of the operator content of the theory.

Only modular S-invariance has been checked in this
paper, for a handful of conformal field theories, on a few
different circle bundles (ellipsoids and Berger spheres in
four dimensions and circle bundles over S2 × S2 in six
dimensions). The most general form of the conjecture
is that for any circle fibration with a locally free U(1)
action that admits arbitrarily large lensing of the fiber
(e.g. Seifert manifolds in three dimensions), there will
emerge an SL(2,Z) invariance of the theory in terms of
the complex structure τ of the emergent T2. Phrasing
the invariance in terms of the complex structure requires
rigid rescalings of the base manifold. It would be inter-
esting to test this general SL(2,Z) invariance and study
any modular covariance properties of correlators under
the symmetry.

Another important extension to this work is to build
a “1/k expansion” for large lensing. As we saw, at sub-
leading order in 1/k the modular equality breaks down
as expected. Large lensing may generally provide a new
perturbative framework to study quantum field theory
on certain curved backgrounds.

Unlensed S1 × S3 partition function

In every case considered in this work, the conjec-
tured modular invariance turns out to control the high-
temperature limit β = 2π/k → 0 on an unlensed S3,
relating it to the low-temperature partition function on
S3/Zk→∞. For thermal partition functions of local CFTs
this is not too surprising, as the high-temperature par-
tition function is rather universal and depends only on
the volume of the spatial manifold. To be consistent with
the formulas of [2, 3], this implies that the coefficient con-
trolling the vacuum energy on S3/Zk→∞ is the same as
the coefficient controlling the vacuum energy on S1×R2.
This is indeed the case in the examples considered. Inter-
estingly, though, supersymmetric partition functions on
S3 (whose leading piece is not extensive) also have their
high-temperature limit controlled by the vacuum energy
on a lens space.

Further applications of large lensing in quantum
field theory

The primary assumption used throughout this work
is an approximate equivalence between a nontrivial cir-
cle fibration and a trivial circle fibration. This can be
used for applications unrelated to modular invariance.
For example, we can consider CFT3 on S3. If the ap-
proximate equivalence is correct, then Z[S3/Zp→∞] ≈
Z[S1

2π/p→0 × S
2]. Again, the equality should be between

the leading singularity in the two path integrals. This
limit gives credence to the idea of large-N “topological
volume-independence” of center-symmetric gauge theo-
ries introduced in [27] by relating it to ordinary large-N
volume independence [28–31], which is firmly established.

Another potential application is to counting prob-
lems. We know that the finite, cutoff-independent part
of F = − log |ZS3 | [32] is a good monotonic quantity [33].
This free energy admits a counting interpretation in CFT
since it can be conformally mapped to the entanglement
entropy across an S1 [34, 35]. It is also known that the
thermal coefficient ctherm which enters the entropy den-
sity on S1×Rd−1 as s ∼ cthermT d−1 (which is the same as
the coefficient εvac which enters into the vacuum energy
on a spatial S1 × Rd−2) is not a good monotonic quan-
tity unless d = 2. These two quantities can now be con-
nected by the one-parameter family of lens spaces. The
free energy on S3/Zp with thermal boundary conditions
on the Hopf fiber as p → ∞ becomes the thermal free
energy on S1

2π/p × S
2. But this gives precisely ctherm up

to geometric factors. Understanding this one-parameter
family may give intuition into the mechanics of the F -
theorem and connect it to the breakdown of the ctherm-
theorem. One conclusion we can immediately draw is
that F = − log |ZS3/Zp |, the lens space free energy, is not
a good monotonic quantity for arbitrary p.
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