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Randomized benchmarking (RB) is widely used to measure an error rate of a set of quantum
gates, by performing random circuits that would do nothing if the gates were perfect. In the limit of
no finite-sampling error, the exponential decay rate of the observable survival probabilities, versus
circuit length, yields a single error metric r. For Clifford gates with arbitrary small errors described
by process matrices, r was believed to reliably correspond to the mean, over all Cliffords, of the
average gate infidelity (AGI) between the imperfect gates and their ideal counterparts. We show that
this quantity is not a well-defined property of a physical gateset. It depends on the representations
used for the imperfect and ideal gates, and the variant typically computed in the literature can
differ from r by orders of magnitude. We present new theories of the RB decay that are accurate
for all small errors describable by process matrices, and show that the RB decay curve is a simple
exponential for all such errors. These theories allow explicit computation of the error rate that RB
measures (r), but as far as we can tell it does not correspond to the infidelity of a physically allowed
(completely positive) representation of the imperfect gates.

Randomized benchmarking (RB) [1–22] is a simple and
efficient protocol for measuring an average error rate of a
quantum information processor (QIP), and is among the
most commonly used experimental methods for charac-
terizing QIPs [23–33]. In its purest form, RB consists
of: (1) performing many randomly chosen sequences of
Clifford gates that ought to return the QIP to its initial
state; (2) measuring at the end of each sequence to see
whether the QIP “survived” (i.e., returned to its initial
state); and (3) plotting the observed survival probabili-
ties vs. sequence length and fitting this to an exponential
decay curve. The decay rate of the survival probability
is – up to a dimensionality constant, and neglecting any
finite-sampling error – the “RB number” (r). RB exper-
iments estimate r, which is used as a metric for judging
the processor’s performance.

The r that RB measures has a clear operational defi-
nition, but it is not clear how it relates to common met-
rics – i.e., what it is that RB measures. In QIP the-
ory, the ideal “target” operations and the imperfect as-
implemented operations are usually represented by pro-
cess matrices, a.k.a. CPTP (completely positive, trace-
preserving) maps. The generally accepted theory behind
RB [5–8] suggests that r is approximately equal to the
average, over all n-qubit Cliffords, of the average gate
infidelity [AGI, Eq. (1)] between the imperfect Cliffords
and their ideal counterparts. We call this quantity the
average gateset infidelity [AGsI, Eq. (2)] and denote it
by ε. It has been widely believed that r ≈ ε whenever
the errors in the gates are small, and describable by pro-
cess matrices [5–17]. In this Letter, we show that r and
ε can differ by orders of magnitude (Fig. 1). This hap-
pens because ε is not a well-defined property of a physical
QIP. Instead, ε is a property of the representation used
to describe the gates, and depends strongly on which of
several equivalent and indistinguishable representations

FIG. 1. An example of the discrepancy between r and the
literature definition for ε. Here the errors are coherent rota-
tions proportional to θ (see main text). For θ ≪ 1 the errors
are small, and prior RB theory [5–8] predicts that r ≈ ε. Main
plot: the curve predicted by prior RB theory [5, 6] (for θ = 0.1)
is inconsistent with simulated RB data, which is accurately
predicted by the theory introduced herein. Inset: ε, estimates
of r from simulated data, and the r predicted by our theory
(rγ), as θ is varied.

is used. We provide a new theory for the RB decay that
is representation-independent, proves that the RB de-
cay is always exponential when the noise is described by
process matrices, and gives an efficient representation-
independent approximate formula for r with small error
bars.

Experimental RB: The basic RB protocol (extensions
exist [9–13]) was summarized above. Complete details
can be found in Refs. [5–8], and in the Supplementary
Material [34]. As in most experiments [23–31], we con-
sider benchmarking an implementation of the n-qubit
Clifford gates with n ≥ 1. The standard way to estimate r
from RB data is to fit the average of the sampled survival
probabilities (Pm), for many sequence lengths m, to the
model Pm = A + (B +Cm)pm, where A, B, C, and p are
fit parameters [5–8]. The estimate of p, denoted p̂, gives
an estimate of r as r̂ = (d − 1)(1 − p̂)/d, where d = 2n. It
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is common to fix C = 0, but Magesan et al. [5, 6] suggest
that fitting C may be necessary when the error varies
from gate to gate.

Theory of RB: The average survival probabilities Pm
are unambiguously real and experimentally accessible.
And r is equally well-defined, as long as the Pm decay ex-
ponentially with m. The motivation for further analysis
– for a theory of RB – is primarily to answer two ques-
tions. First, under what circumstances does Pm decay
exponentially? Second, when it does, what is r? That
is, to what property of the imperfect gates does r cor-
respond? Building such a theory requires specifying a
model for the operations used in RB.

These operations comprise: (1) a set of gates; (2) a
set of state preparations; and (3) a set of measurements,
which together form a physical gateset. A model asso-
ciates them with mathematical objects that can be used
to compute Pm. If each operation is independent of all
external contexts – e.g., time, external fields, ancillary
qubits – then each gate can be represented by a process
matrix Gi, each state preparation by a density opera-
tor ρj , and each measurement by a positive operator-
valued measure (POVM) Mk = {Ek,l}. Probabilities
of events are given by Born’s Rule: Pr(Ek,l ∣ρj ,Gi) =
Tr [Ek,lGiρj]. In this commonly used model for analyz-
ing RB, an as-built processor with an imperfect physi-
cal gateset can be represented by some G̃ = {G̃i, ρ̃j , Ẽk,l},
and an idealized perfect device by some G = {Gi, ρj ,Ek,l}.
Since r is independent of the state preparation and mea-
surement [5, 6], we will usually only need representations
of the imperfect and ideal Cliffords, denoted C̃ = {C̃i}
and C = {Ci}, respectively.

RB theory is clear when the gateset has gate-
independent errors; which means that there is a process
matrix Λ such that each imperfect Clifford can be repre-
sented as C̃i = ΛCi. In this situation, r is exactly equal
to the average gate infidelity (AGI) between Λ and the
identity process matrix 1 [5]. The AGI between process
matrices G̃ and G is simply 1 − F̄ , where

F̄ (G̃,G) ∶= ∫ dψ Tr (G̃[∣ψ⟩⟨ψ∣]G[∣ψ⟩⟨ψ∣]) . (1)

But a general theory of RB needs to address the more
likely case of gate-dependent errors, where C̃i = ΛiCi.
A starting point is the observation that, for gate-
independent errors, every imperfect Clifford has the same
AGI with its ideal counterpart: F̄ (C̃i,Ci) = F̄ (Λ,1). So,
a plausible generalization of AGI to gate-dependent er-
rors is its average over all Cliffords:

ε(C̃,C) ∶= avgi [1 − F̄ (C̃i,Ci)] , (2)

a quantity we call the average gateset infidelity (AGsI).
An extensive literature suggests or argues that r ≈ ε [5–

17] for “weakly gate-dependent” errors [5, 6] – i.e., when
all the error maps Λi = C̃iC−1

i are close to their average.

FIG. 2. A comparison between simulated RB data and the
decay curve predicted by prior RB theory [5, 6] for a gateset
with small unitary errors. The blue shaded region depicts the
range within which the RB decay is guaranteed to fall by the
theorems in Ref. [5, 6], in the limit of many samples.

More precisely, when δ ∶= ∥Λi − Λ̄∥H1→1 ≪ 1 for all i [5, 6],
where Λ̄ ∶= avgi[Λi] is the average error map, and ∥ ⋅∥H1→1

is the Hermitian 1-to-1 norm [6]. Since this is true when-
ever the Λi are all close to 1, it holds for all small errors.
However, r and ε can actually differ by orders of magni-
tude, for simple and realistic noise models. Consider a
simple 1-qubit example involving Cliffords compiled into
two “primitive” gates.

Example 1: The ideal primitive gates are repre-
sented by Gx = R(σx, π/2) and Gy = R(σy, π/2), where
R(H,θ)[ρ] ∶= exp(−iθH/2)ρ exp(iθH/2). Any 1-qubit
Clifford can be compiled into Gx and Gy. The imper-

fect primitives are represented by G̃x = R(σz, θ)Gx and
G̃y = R(σz, θ)Gy with θ ≪ 1, which corresponds to a
small systematic detuning or timing error.

We simulated RB with Cliffords compiled into these
imperfect gates and observed r ≪ ε. For θ = 0.1, the the-
ory predicts ε ≈ 10−3, but we observed r̂ ≈ 10−5 (Fig. 1).
Varying θ (Fig. 1, inset) shows that r ∝ θ4, while ε∝ θ2.
As the errors become small, the ratio ε/r diverges.

This example lies within the domain of standard RB
theory – the errors are small and only weakly gate-
dependent (as defined in Refs. [5, 6]) – and it does not
contradict the technical results of Refs. [5, 6], that link r
to ε. Refs. [5, 6] include error bounds that bound the dif-
ference between actual and predicted RB decay curves.
These bounds, which we plot for Example 1 in Fig. 2, are
sufficiently loose that they do not significantly constrain
ε/r. A complete description of our simulation methodol-
ogy is provided in the Supplementary Material [34].

Understanding the discrepancy: The discrepancy
between r and ε has a simple but subtle explanation: RB,
like all experiments, probes properties of a physical QIP,
not of a model for it. Although a physical QIP’s gates
may be accurately represented by a fixed set of process
matrices, that representation is not unique. The RB error
rate r is a property of the physical gates, and therefore
representation-independent. But ε, as conventionally de-
fined, is not.

Two representations of a physical gateset are equiva-
lent if they cannot be distinguished by any experiment.
More precisely, representations G and G′ are equivalent
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iff they predict the same probabilities for every quantum
circuit. Equivalent representations are easy to construct.
If G = {Gi, ρj ,Ek,l} accurately represents a QIP, then so
does

G(M) = {MGiM
−1,M(ρj),M−1(Ek,l)}, (3)

where M is any invertible linear map, which we call a
gauge transformation [35–38]. If f is an observable prop-
erty of the QIP that can be computed from a model G,
then f(G) must be the same for all equivalent represen-
tations. So observable properties like r must correspond
to gauge-invariant functions: f(G) = f(G(M)) for all M .

The AGsI defined in Eq. (2) is not gauge-invariant.
It depends on the representations for the physical and
perfect gatesets. If C̃ and C are representations for the
imperfect and ideal Cliffords respectively, then C̃(M) and
C(N) are equivalent representations, for arbitrary invert-
ible M and N . The AGsI has a continuum of values as M
and N are varied, and this is still true if we (arbitrarily)
fix either representation.

Transforming the perfect and imperfect Cliffords in
the same way (i.e., M = N above) leaves the AGsI un-
changed. So, we can define a gauge-invariant AGsI by
comparing C̃ not to the usual fixed representation of the
Cliffords C, but to a C-dependent representation of them,
CC̃ , that satisfies CC̃(M) = CC̃(M). For example, we could
define the AGsI with respect to the representation of the
perfect Cliffords that is “closest” to the process matrices
representing the imperfect Cliffords. If we do so, the as-
sertion that r ≈ ε is not wrong, but ambiguous; it requires
a unique definition for the “closest” representation of the
Cliffords. We return to this at the end of the Letter.

As far as we can tell, ε has not been defined or cal-
culated in a representation-independent way in the lit-
erature. It is generally defined by: (1) taking C as the
automorphism group of the Pauli matrices; (2) taking
the imperfect gateset to be C̃ = {ΛiCi} where the Λi de-
scribe the “relevant error process”; and (3) calculating
the AGsI (Eq. 2) between C̃ and the already-defined ma-
trices C. This procedure, which we followed in our exam-
ple above, is explicit in the RB simulations of Refs. [8, 16]
and is the most natural reading of the foundational RB
papers by Magesan et al. [5, 6].

Example 2: A perfect Clifford gateset C̃ = C has an
AGsI to C of ε(C̃,C) = 0. But if U is a unitary and
U[ρ] ∶= UρU †, then C̃(U) is an equivalent representation
of the gateset with generally non-zero AGsI.

Example 1 is actually very similar to Example 2. The
imperfect primitive gates in Example 1, G̃x and G̃y,
are almost gauge-equivalent to their perfect counter-
parts. Some algebra shows that G̃x/y(ρ) = Ux/yρU

†
x/y

where Ux/y = exp(−iφ(v̂x/y ⋅ σ⃗)/2), φ = π/2 +O(θ2), and

v̂x ⋅v̂y = 0+O(θ2). So at O(θ) the G̃x and G̃y gates induce
rotations by π/2 around orthogonal axes. Hence, there
exists some U with U[ρ] = UρU † for unitary U such that

UG̃x/yU−1 = R(ŵx/y ⋅ σ⃗, ϕx/y)Gx/y where ϕx/y = O(θ2)
and ŵx/y are some unit vectors. In this representation,

the Clifford error maps Λi = C̃iC−1
i are unitary rotations

by O(θ2), which suggests an RB number of r = O(θ4), as
observed. Although the O(θ) detuning error is real and
physical, its effect on these gates is, at O(θ), equivalent
to a gauge transformation. So, in all circuits consisting
of only these gates, it behaves like a coherent error with
a rotation angle of O(θ2).
New theories for the RB decay: We would like to
know what property of a physical gateset RB is mea-
suring, and to have an accurate, efficient formula for
r({C̃i}). To this end, we now present new theories for
the RB decay that are representation-independent and
highly accurate.

The average survival probability over all RB sequences
of length m is

Pm = 1

∣C∣m∑s
Tr(EC̃s−1C̃sm . . . C̃s1(ρ)), (4)

where E and ρ are the (imperfect) measurement and state
preparation, Cs−1 is the Clifford that inverts the first m
Cliffords, s ∈ [1..∣C∣]m, and ∣C∣ is the order of the Clif-
ford group. The map Sm = avgs[C̃s−1C̃sm . . . C̃s1] can be
written as Sm = ∣C∣v⃗TRm+1v⃗, where v⃗ = (1,0, . . . ,0)T , 1
and 0 are the n-qubit identity and “zero” superoperators
(0(ρ) = 0) respectively, and

R = 1

∣C∣

⎛
⎜⎜⎜
⎝

C̃1→1 C̃2→1 ⋯ C̃∣C∣→1

C̃1→2 C̃2→2 ⋯ C̃∣C∣→2

⋮ ⋮ ⋱ ⋮
C̃1→∣C∣ C̃2→∣C∣ ⋯ C̃∣C∣→∣C∣

⎞
⎟⎟⎟
⎠
, (5)

where Cj→k = C−1
j Ck and C̃j→k is the correspond-

ing imperfect Clifford. It follows that Pm =
∣C∣Tr(E(v⃗TRm+1v⃗)(ρ)), and so

Pm =∑
i

αiλ
m+1
i , (6)

where {λi} are the 4n∣C∣ eigenvalues of R, n is the number
of qubits, and {αi} are constants depending on ρ, E, and
the eigenvectors of R.

This exact expression for the RB decay curve can be
calculated efficiently in m (unlike exhaustive averaging
over ∣C∣m−1 sequences). However, it is intractable for
n > 1 qubits, and does not explain why decays with a
functional form of A+Bpm are normally observed in prac-
tice. We therefore make a small approximation.

Because C̃s−1 = (Λ̄+∆s−1)C−1
s1 . . .C

−1
sm , where ∆i = Λi −

Λ̄, we can rewrite Eq. (4) as

Pm = 1

∣C∣m∑s
Tr(EΛ̄C−1

s1 . . .C
−1
smC̃sm . . . C̃s1(ρ))+δ̃m. (7)

Therefore Pm = Tr(EΛ̄[Lm(1)](ρ)) + δ̃m, where

L (E) = avgi[C−1
i EC̃i], (8)
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is a linear map on superoperators (a “superduperoper-
ator” [39]). Hence, Pm = ∑i ωiγmi + δ̃m, where {γi} are
the 16n eigenvalues of L , and {ωi} depend on ρ, E, Λ̄,
and the eigenvectors of L . The {γi} are representation-
independent. In the Supplementary Material [34] we
prove that δ̃m satisfies ∣δ̃m∣ ≤ δ◇ ≡ 1

2
avgi∥Λi − Λ̄∥◇. Be-

cause the Λi are representation-dependent, the size of δ◇
depends on the representations C̃ and C. But since this
bound holds for any CPTP representations, ∣δ̃m∣ ≤ δmin

◇
with δmin

◇ the minimum of δ◇ over all CPTP representa-
tions of the gatesets.

If there exists a representation in which the errors are
gate-independent (C̃i = ΛCi for all i and some Λ), then
δmin
◇ = 0 and the RB decay is exactly described by L .

Because the Cliffords are a unitary 2-design [3], L has
only three distinct eigenvalues in this case: 1, γ, and 0
(0 has a degeneracy of 16n − 2). The RB decay is then
exactly described by Pm = ω0 + ω1γ

m. This recovers the
exact RB theory for gate-independent error maps [5, 6].

Small errors are a small perturbation away from the
case of no error (γ = 1), and cause similarly small pertur-
bations of the eigenvalues. Hence, for any small errors,
γ0 = 1 (as 1 is always an eigenvalue of L ), γ1 satisfies
1 − γ1 ≪ 1, and ∣γi∣ ≪ 1 for all i > 1. As such,

Pm = ω0 + ω1γ
m + δm, (9)

where γ = γ1, ∣δm∣ ≤ δmin
◇ + κm, and κm = ∣ω2γ

m
2 +ω3γ

m
3 +

. . . ∣ is an exponentially decreasing function of m. Hence,
for m ≫ 1 the RB decay curve is well approximation
by the functional form Pm = A +Bpm. Therefore, the p
obtained from fitting RB data to Pm = A+Bpm is an esti-
mate of γ, the second largest eigenvalue of L . Similarly,
as r is given by r = (d−1)(1−p)/d, r is approximately an
estimate of rγ ≡ (d−1)(1−γ)/d. That is, r = rγ + δr with
δr ≪ 1 a small correction factor. Fig. 1 demonstrates this
for the gateset of Example 1.

To our knowledge, this is the first proof that the RB de-
cay curve is guaranteed to always be exponential for small
errors that can be described by CPTP maps – includ-
ing gate-dependent errors. This indicates that the model
Pm = A+ (B +Cm)pm is not necessary. Fitting it should
always yield Ĉ ≈ 0, so estimating C is not likely to help
quantify gate-dependence (see suggestion in Refs. [5, 6]).
Instead, our results show that significant non-exponential
decay is a clear symptom of non-Markovianity (e.g., time
dependence).

We now return to a question raised earlier: Are there
natural representations of the perfect and imperfect gate-
sets in which ε = r? “Natural” is important, because
ε varies so widely over representations. An absurd an-
swer would be to compute r and then search over all
representations of a gateset to find one in which ε = r.
The most obvious reasonable option is to arbitrarily fix a
CPTP representation of the perfect gateset and to choose
the representation of the imperfect gateset in which the
gates are all CPTP and ε is minimal (ε can always be

made large by choosing a “bad” representation – see Ex-
ample 2). This defines a new and gauge-invariant AGsI
εmin ∶= minM [ε(C̃(M),C)], with the minimization re-
stricted such that the gates in C̃(M) are CPTP. But εmin

does not exactly correspond to r, as it can be strictly less
than r (see Supplementary Material [34]).

After the initial version of this Letter appeared, Wall-
man [40] published an independent analysis of RB. Based
on a different representation of the L operator, Wall-
man’s theory also derives an exponential decay at the
same rate γ derived here, but proves a tighter error bound
that decays exponentially with m, confirming that the
RB decay is completely described by γ, and δr is negli-
gible in r = rγ + δr. Wallman’s construction implies that
there exists a representation of the imperfect gates for
which ε = r. To prove this, let L ′(E) = avgi[C̃iEC−1

i ].
L ′ has the same spectrum as L . Wallman [40] gives
an explicit construction of a superoperator L that sat-
isfies L ′(L) = LDγ , where Dλ is a depolarizing channel
(Dλ(ρ) = (1 − λ)1/d + λρ). Now, consider the partic-
ular representation of the imperfect Cliffords C̃(L−1) =
{L−1C̃iL}. Some simple algebra (see Supplementary Ma-
terial [34]) shows that rγ = ε(C̃(L−1),C). So there is
an explicitly calculable representation of the gateset that
makes ε = r. However, the gates in this representation are
not generally completely positive, which makes it hard to
consider this gauge “natural” (non-CP gauge choices can
even make ε < 0).

Conclusions: It is surprisingly nontrivial to relate
the RB error rate r – a well-defined, representation-
independent property of a physical QIP’s gates – to
the process matrices describing those gates, and identify
what property it corresponds to. The simple relation-
ship for gate-independent errors, where r equals the av-
erage gateset infidelity (AGsI, ε) between imperfect and
perfect Cliffords, obscures the complexity of the general
case. AGsI can be orders of magnitude larger than r un-
less the right representations are used. This has serious
practical consequences, as shown by Example 1 and some
of the results in Ref. [8], where r ≪ ε for experimentally
plausible error models.

Our analysis indicates that RB is even more stable and
reliable than indicated by previous work [5, 6, 8]; Pm de-
cays exponentially (without higher-order corrections of
the form mpm) for all small errors describable by process
matrices, including coherent errors. We established this
by introducing a new, accurate, theory for the RB decay
curve that associates r with a calculable, representation-
independent property of the physical gateset. Subsequent
results by Wallman [40] allow us to observe that this
quantity is an AGsI, for at least one representation of
the imperfect gates, but in this representation the gate
process matrices are generally unphysical (not completely
positive). Since current theories for many extended RB
protocols, such as interleaved [9], dihedral [16, 17], and
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unitarity [7] RB, rely on representation-dependent tech-
niques, it is an interesting open question whether they
can be reformulated in a representation-independent way
as we did here with basic RB.
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tics B: Quantum and Semiclassical Optics 7, S347 (2005).

[2] J. Emerson, M. Silva, O. Moussa, C. Ryan, M. Laforest,
J. Baugh, D. G. Cory, and R. Laflamme, Science 317,
1893 (2007).

[3] C. Dankert, R. Cleve, J. Emerson, and E. Livine, Physi-
cal Review A 80, 012304 (2009).

[4] E. Knill, D. Leibfried, R. Reichle, J. Britton,
R. Blakestad, J. Jost, C. Langer, R. Ozeri, S. Seidelin,
and D. Wineland, Physical Review A 77, 012307 (2008).

[5] E. Magesan, J. M. Gambetta, and J. Emerson, Physical
Review Letters 106, 180504 (2011).

[6] E. Magesan, J. M. Gambetta, and J. Emerson, Physical
Review A 85, 042311 (2012).

[7] J. J. Wallman and S. T. Flammia, New Journal of Physics
16, 103032 (2014).

[8] J. M. Epstein, A. W. Cross, E. Magesan, and J. M. Gam-
betta, Physical Review A 89, 062321 (2014).

[9] E. Magesan, J. M. Gambetta, B. R. Johnson, C. A. Ryan,
J. M. Chow, S. T. Merkel, M. P. da Silva, G. A. Keefe,
M. B. Rothwell, T. A. Ohki, et al., Physical Review Let-
ters 109, 080505 (2012).

[10] J. Wallman, C. Granade, R. Harper, and S. T. Flammia,
New Journal of Physics 17, 113020 (2015).

[11] S. Kimmel, M. P. da Silva, C. A. Ryan, B. R. Johnson,
and T. Ohki, Physical Review X 4, 011050 (2014).

[12] J. M. Gambetta, A. Córcoles, S. T. Merkel, B. R. John-
son, J. A. Smolin, J. M. Chow, C. A. Ryan, C. Rigetti,
S. Poletto, T. A. Ohki, et al., Physical Review Letters
109, 240504 (2012).

[13] R. N. Alexander, P. S. Turner, and S. D. Bartlett, arXiv
preprint arXiv:1605.08053 (2016).

[14] J. Helsen, J. J. Wallman, S. T. Flammia, and S. Wehner,
arXiv preprint arXiv:1701.04299 (2017).

[15] M. Fogarty, M. Veldhorst, R. Harper, C. Yang,
S. Bartlett, S. Flammia, and A. Dzurak, Physical Re-
view A 92, 022326 (2015).

[16] A. Carignan-Dugas, J. J. Wallman, and J. Emerson,

Physical Review A 92, 060302 (2015).
[17] A. W. Cross, E. Magesan, L. S. Bishop, J. A. Smolin, and

J. M. Gambetta, NPJ Quantum Information 2, 16012
(2016).

[18] C. Granade, C. Ferrie, and D. Cory, New Journal of
Physics 17, 013042 (2015).

[19] S. Sheldon, L. S. Bishop, E. Magesan, S. Filipp, J. M.
Chow, and J. M. Gambetta, Physical Review A 93,
012301 (2016).

[20] H. Ball, T. M. Stace, S. T. Flammia, and M. J. Biercuk,
Physical Review A 93, 022303 (2016).

[21] J. Kelly, R. Barends, B. Campbell, Y. Chen, Z. Chen,
B. Chiaro, A. Dunsworth, A. Fowler, I.-C. Hoi, E. Jeffrey,
et al., Physical Review Letters 112, 240504 (2014).

[22] J. J. Wallman, M. Barnhill, and J. Emerson, Physical
Review Letters 115, 060501 (2015).

[23] R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank,
E. Jeffrey, T. White, J. Mutus, A. Fowler, B. Campbell,
et al., Nature 508, 500 (2014).

[24] Z. Chen, J. Kelly, C. Quintana, R. Barends, B. Campbell,
Y. Chen, B. Chiaro, A. Dunsworth, A. Fowler, E. Lucero,
et al., Physical Review Letters 116, 020501 (2016).

[25] R. Barends, J. Kelly, A. Veitia, A. Megrant,
A. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro,
A. Dunsworth, et al., Physical Review A 90, 030303
(2014).

[26] T. Xia, M. Lichtman, K. Maller, A. Carr, M. Piotrowicz,
L. Isenhower, and M. Saffman, Physical Review Letters
114, 100503 (2015).

[27] J. Muhonen, A. Laucht, S. Simmons, J. Dehollain,
R. Kalra, F. Hudson, S. Freer, K. M. Itoh, D. Jamieson,
J. McCallum, et al., Journal of Physics: Condensed Mat-
ter 27, 154205 (2015).
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