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Bottle-brush polymers exhibit closely grafted side chains that interact by steric repulsion, thereby
causing stiffening of the main polymer chain. We use single-molecule elasticity measurements of
model brush polymers to quantify this effect. We find that stiffening is only significant on long
length scales, with the main chain retaining flexibility on short scales. From the elasticity data,
we extract an estimate of the internal tension generated by side-chain repulsion; this estimate is
consistent with the predictions of blob-based scaling theories.

A brush polymer consists of a long main chain deco-
rated along its length with short, covalently-attached side
chains (Fig. 1a). This branched geometry causes brush
polymers to have unique conformational behaviors that
can impart particular characteristics to bulk materials.
The brush geometry can be found in biological macro-
molecules within the extracellular matrix of tissues [1–4],
and there has been recent interest in materials applica-
tions of networks of synthetic brush polymers [5].

In good solvent conditions, brush polymers are
straightened by repulsive excluded-volume interactions
between the side chains. This effect depends on the size of
an isolated side chain (radius of gyration, Rs) relative to
the grafting distance along the main chain (mbm, where
m is the average number of Kuhn monomers between
grafting points, and bm is the main-chain Kuhn length;
see Fig. 1a). Brush polymer behavior can be split into
two regimes based on side chain overlap [5]. In the ‘comb’
regime of small, well-spaced side chains, Rs < mbm, the
lack of side chain overlap minimizes stiffening. In con-
trast, brush stiffening is significant in the ‘bottle-brush’
regime of high grafting densities and/or large side chains,
Rs > mbm.

There are conflicting theoretical predictions on the na-
ture of the stiffening effect within the bottle-brush regime
[6–9], which is typically parameterized through an effec-
tive persistence length that varies with side chain size
and grafting density. The issue is complicated by the
chain’s hierarchical structure, and the resulting scale-
dependence of chain stiffness: side chain stiffening is
relevant on long scales, >∼ Rs, while, on shorter scales,
the main chain retains the freedom to act as a flexible
random walk. The situation is reminiscent of electro-
static stiffening within polyelectrolytes, which also dis-

plays scale-dependent stiffening [10], and whose effective
persistence length has also been the subject of a long-
running dispute. For both bottle-brush polymers and
polyelectrolytes, experiments have generally been unable
to resolve the issue; this has been attributed to the com-
plexity of scale-dependent behavior, along with differ-
ences in the manner of quantifying stiffness [11, 12].

Here, we quantify the scale-dependent stiffness of
model brush polymers using single-molecule tensile elas-
ticity measurements with a magnetic tweezer (Fig. 1b).
At low applied tensions, corresponding to long length
scales, we find a ten-fold stiffening of the brush complex
over the main chain alone, consistent with scaling pre-
dictions [6, 9]. As the tension increases and progressively
shorter length scales are probed, the effective stiffness

a b

Rs

mbm

L

f

D

FIG. 1. (a) Sketch of brush polymer geometry: a main
chain (Kuhn length bm) is attached every m monomers to
side chains of extent Rs; the resulting complex has an effec-
tive diameter D. (b) Schematic of experimental geometry:
a brush polymer containing an ssDNA main chain and PEG
side chains is attached to a glass surface and magnetic bead,
and its length L is measured as a function of force f .
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continuously decreases until it reaches the bare main-
chain value. We quantify this effect through an elasticity
model that combines the applied tension with an internal
tension generated by side-chain repulsion, and we show
that this internal tension is well-predicted by blob-based
scaling theories [13].

The model brush polymers consist of a single-stranded
DNA (ssDNA) main chain with poly(ethylene gly-
col) (PEG) side chains. The ssDNA is synthesized
by a rolling circle amplification (RCA) reaction that
generates chain lengths of several thousand basepairs
[14], consisting of hundreds of repeats of the sequence
5′-ATGGAAAGTAAAAGAAATAAAGAAGAGT-3′

(see Fig. S1). Prior studies have found such ssDNAs
to display no appreciable intramolecular base pairing
[14, 15]. The RCA reaction generates relatively polydis-
perse ssDNA products (see Figs. S2 and S3). However,
this does not affect our results: prior single-molecule
measurements have established that relative elasticity,
which is the focus of this work, is identical for ssDNA
chains with different absolute contour lengths in the
regime investigated here [21].

The RCA reaction is run either with unmodified nu-
cleotides (to generate an unbranched control strand), or
with a fraction of dibenzocyclooctyne (DBCO)-modified
dUTP residues. DBCO-dUTPs replace T’s in the main
chain, and act as grafting points through a strain-
promoted azide-alkyne cycloaddition reaction that links
DBCO to azide-modified 10 kDa PEG side chains (see
Fig. S1)[16, 17]. The 10 kDa mPEG azides are quite
monodisperse, with polydispersity indices of 1.04 to 1.06,
insuring consistent results. Grafting density is con-
trolled by altering the ratio of DBCO-dUTP to dTTP
nucleotides in the reaction mix, with a 1:4 ratio generat-
ing a sparsely-grafted chain (one side chain per 35 bases)
and a 4:1 ratio generating a densely-grafted chain (one
side chain per 8.75 bases).

The ssDNA is terminally labeled with thiol and bi-
otin moieties, which are used to immobilize the complex
onto a maleimide-functionalized glass flow cell, and a
streptavidin-coated magnetic bead, respectively. Stretch-
ing experiments are run in a buffer containing 10 mM
Tris-HCl (pH 7.5) and 30 mM NaCl, using standard mag-
netic tweezer force-extension protocols [18, 19]. For each
candidate tethered bead, the bead height is measured as
the bead is rotated to insure only a single ssDNA chain
tethers the bead (if multiple tethers are present, they be-
come interwound with rotation, leading to characteristic
height changes [31]). Further, acquired data is screened
for sudden changes in bead position caused by unwanted
adsorption of the polymer onto the bead or glass surface;
all such data are eliminated. For each type of chain, sep-
arate measurements are carried out using 1 µm diameter
beads, to access low-force elasticity (0.1 <∼ f <∼ 10 pN),
and 2.7 µm diameter beads, to access high force elastic-
ity (1 <∼ f <∼ 100 pN). For comparison purposes (Fig. 2),
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FIG. 2. Force-extension data for densely- and sparsely-
branched chains, along with an unbranched control. Each
curve represents binned and averaged data for 6 (un-
branched), 7 (sparsely-branched) and 10 (densely-branched)
separate force extension curves. Extension is normalized to
the extension at 50 pN. Error bars are the SEM.

composite force-extension curves covering the full force
range are generated by normalizing the high force data
to unity at f = 50 pN, then multiplicatively adjusting
the extension of the low-force data so as to minimize the
sum of squared length differences between the high-force
and low-force curves over the overlap regime (1 <∼ f <∼ 10
pN). For fitting (Fig. 3), the raw high-force data is used.

Given the side chain gyration radius (Rs ≈ 4.5 nm
[20]), the sparsely grafted chain (mbm ≈ 24.5 nm) is
in the comb-polymer regime, while the densely-grafted
chain is on the edge of the bottle-brush regime (mbm ≈
6.1 nm). This difference has a large effect on the
force-extension curves for the three polymer designs
(Fig. 2). The control and sparsely-grafted chains show
near-equivalent elasticity, consistent with the expectation
of minimal side-chain induced effects for a comb polymer.
In contrast, the densely-grafted chain maintains a longer
relative extension over the entire force regime, consistent
with significant side-chain repulsion leading to straight-
ening of the complex.

By analyzing the low-force regime, we can estimate
the local stiffening of the densely-grafted chain. Both
the control and sparsely-grafted chains show a power-
law low-force elasticity, L ∼ fγ , with γ ≈ 0.6, consistent
with the ‘Pincus blob’ regime of swollen-chain elasticity
[21, 22]. The Pincus elastic regime terminates at a force
fc ∼ kBT/b, where b is the chain Kuhn length [23, 24].
For the control chain, the endpoint is fc ≈ 1 pN, and a
relative extension ≈ 0.4, consistent with prior observa-
tions of undecorated ssDNA [21]. In contrast, no Pin-
cus regime is observed in the densely grafted chain down
to 0.1 pN. Since this lowest measured force is ten-fold
lower than fc of the control strand, we conclude that the
densely-grafted chain has a Kuhn length at least ten-fold
greater than the control. While this is a lower bound,
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we do not expect the full stiffening to greatly exceed
ten-fold: the relative extension at 0.1 pN is around 0.4,
the typical transition point into Pincus elasticity. More-
over, the curve for the densely-branched polymer shows
a downward curvature at 0.1 pN, which could indicate an
entrance into the Pincus regime below 0.1 pN.

The stiffness of a bottle-brush polymer gives informa-
tion on the side chain structure, as the molecule’s Kuhn
length is approximately equal to the bottle-brush diam-
eter, D [6, 9]. Combining the ≈ 2 nm Kuhn length of
undecorated ssDNA at this ionic strength [21], and the
estimated ten-fold stiffening, we find the densely grafted
chain has a Kuhn length and thus diameter D ≈ 20
nm. This is a reasonable estimate of D, falling be-
tween the gyration radius (4.6 nm) and contour length
(63 nm) of the side chains. Our estimate can be com-
pared with scaling theories that predict D from mod-
els accounting for entropy loss upon side-chain stretch-
ing, the free energy of interactions between neighbor-
ing side-chains, and the entropic elasticity of the main
chain. Using such an approach, Birshtein et al. [6] pre-
dict D ∼ bsn

3/5τ1/5(n/m)3/25, where n is the number
of side-chain statistical monomers, τ indicates the sol-
vent quality, and bs is the side-chain Kuhn length. For
10 kDa PEG in water, we estimate n ≈ 63, bs ≈ 1 nm,
and τ = 1 (good solvent conditions), while the grafting
density is m ≈ 3. These values give D ≈ 17 nm, in good
agreement with our measurement estimate of ≈ 20 nm.
We emphasize that scaling estimates are utilized three
times in this discussion: first, in relating elastic regime
crossover to Kuhn length, fc ∼ kT/b; second, in relating
Kuhn length to diameter, b ∼ D; and third, in the Bir-
shtein scaling relation for D. For these relations, precise
numerical equivalence cannot be expected.

More details on chain structure can be found from an-
alyzing the high-force elasticity, though comparison to
the ungrafted control strand is difficult: both the control
and sparsely-grafted chain display an inflection point in
the high-force elasticity that we attribute to mechani-
cal unstacking of bases. Each sequence repeat of the
main-chain ssDNA contains several runs of consecutive
adenosines (A’s). Adjacent A’s have strong base-stacking
interactions, forming compact, locally-helical domains of
increased rigidity within an otherwise flexible, unstacked
ssDNA [15, 25]. Increasing external tension leads to co-
operative unstacking of those regimes, leading to a sig-
moidal increase in extension at a characteristic force. The
inflection point in our elastic curves occurs around 20 pN,
which is consistent with values previously reported both
for unstacking poly(dA) chains [15, 25], and for the spe-
cific mixed-base sequence used here [15].

In contrast, the densely-grafted chain shows a slow,
monotonic increase of extension with applied force, with
no apparent inflection point. This indicates that the ss-
DNA chain within the densely-grafted complex lacks sig-
nificant stacking interactions. Yet, all ssDNA molecules
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FIG. 3. Representative f versus L data for a densely-branched
polymer (circles) with fits to Eq. 1 (yellow line; best-fit param-
eters lp = 3.5 nm, L0 = 6000 nm; χ̄2 = 11.6) and Eq. 2 (blue
line; best-fit parameters lp = 2.2, fint = 1.2 pN, L0 = 6150
nm; χ̄2 = 2.5). Inset: Standardized residuals, ∆f/σf , vs. L
for each fit. ∆f = f−f∗ is the difference between data f and
fit f∗, and σf = 0.05f is the estimated 5% error in force.

in this study share the same sequence, and so might be
expected to display similar unstacking behavior. We at-
tribute the lack of unstacking in the densely-grafted chain
to local disruption by the grafting itself: particularly,
three of the four adenosine runs terminate at a location
where a PEG-modified base can be incorporated. In the
dense chain, most of these locations will indeed be occu-
pied by a PEG-modified base. This covalent modification
appears to discourage stacking.

In the absence of a pronounced enthalpic effect such as
base unstacking, we expect that the densely-grafted chain
displays entropic elasticity. In the high force regime,
away from the crossover to swollen-chain elasticity, this
can be quantitatively tested by comparison to analyt-
ical models. Here, we compare to the Marko-Siggia
(MS) elasticity model for a worm-like chain (WLC) [26].
The MS-WLC model has been experimentally validated
for ssDNA lacking intramolecular base pairing interac-
tions [21, 27]; further, theoretical work predicts that
WLC elasticity holds for the moderately high force range
(1 < f < 100 pN) and chain chemistry used here [28]. We
use the asymptotic form of the MS-WLC model, appro-
priate for large relative extensions, L/L0 > 0.5 [26]:

L/L0 = 1 −

√
kBT

4flp
, (1)

where lp is the chain’s persistence length. We apply Eq. 1
using least-squares fitting to portions of the high-force
data from five separate molecules. The portions used are
selected first by discarding data with f > 63 pN, thereby
ensuring that all fitting is performed over the same range
of forces for each molecule. The remaining data are sub-
jected to a three-step fitting scheme designed to consis-
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tently apply Eq. 1: i) Eq. 1 is fit to the data to determine
an initial estimate of L0; ii) this value of L0 is used to
select data with L/L0 > 0.5; and iii) Eq. 1 is re-fit to the
selected data. While the experiment imposed a constant
applied force and measured the resulting extension, the
error in force calibration (≈ 5%) is significantly larger
than the error in measuring length (< 1%). Thus, fits
are performed on transposed data, treating force as the
dependent parameter and length as the independent pa-
rameter; Fig. 3 is similarly transposed with respect to
Fig. 2. Least-squares fits and goodness-of-fit metrics are
calculated by weighting with the 5% error in force.

Least-square fits of Eq. 1 to a representative force-
extension curve are shown in Fig. 3, along with standard-
ized residuals. Fits of the analytical MS-WLC model to
all curves, along with best-fit parameters, can be found in
Fig. S4 and Table S1. The fit parameters were lp and L0.
As shown, the MS-WLC qualitatively captures the elas-
ticity, with best-fit lp in the range 2.6 to 4.2 nm across all
5 molecules. However, the fits quantitatively fail: clear
systematic deviations can be seen in the residuals, and
the reduced-chi-squared fitting metric, χ̄2, ranges from
8.9 to 15.1. Note that χ̄2 is normalized for the number
of fit parameters, and that χ̄2 ≈ 1 is expected for a fit
that correctly describes, but does not over-fit, the data.

We posit that the densely-grafted chains exhibit a
scale-dependent stiffness, which causes Eq. 1 to fail due
to its assumption of a constant lp at all forces. To in-
corporate this effect, we follow recent work on charged
chains [29] and use an additive-tension model: we intro-
duce an internal tension, fint, that describes the force
of side-chain repulsion, and insert it into the elasticity
model by replacing the applied force f with the sum of
applied and internal forces, f + fint:

L/L0 = 1 −

√
kBT

4lp(f + fint)
. (2)

This substitution takes inspiration from the Weiss
molecular-field model for ferromagnetism [30], where sus-
ceptibility is estimated from the response of a magnetic
dipole to the sum of the external field and an internal
field arising from dipole-dipole interactions. Here, the
additive-tension model balances the main chain entropic
elasticity (parameterized by lp) against both the external
tension f and the side chain repulsive force fint.

The additive tension model successfully describes the
elasticity of the densely-grafted complex. We show fits
of Eq. 2, using the same three-step methodology de-
scribed above, in Fig. 3; the fit parameters are lp, fint
and L0. The fits result in acceptable goodness-of-fit met-
rics: χ̄2 ranges from 1.5 to 2.5 across the five molecules
tested. The best-fit persistence length is 2.1 ± 0.4 nm,
and the best-fit internal tension is 1.3 ± 0.3 pN, each
reported as mean ± standard deviation. The bare per-
sistence length of unstacked ssDNA in the complete ab-

sence of electrostatic effects is ≈ 0.6 nm [21], significantly
smaller than the value found from the fits here. We at-
tribute the increased effective lp to electrostatic stiffen-
ing, along with remnant stacking interactions that might
be present, though the latter effect must be sufficiently
weak to explain the lack of sigmoidal elastic response.

The measured internal tension, fint ≈ 1.3 pN, is con-
sistent with estimates of the repulsive force between side
chains. Using similar energetic-balance models as Bir-
shtein et al. [6], Panyukov et al. [13] developed a scaling
model that predicts:

fint = αkBTb
5/8
s n3/8τ1/8d−13/8, (3)

where d is the distance between the side chains and α
is a numerical prefactor that is not fixed by the scaling
model. We fix α = 1, and estimate fint using the side-
chain parameters utilized above. We find d based on the
range of relative extensions, 0.5 < L/L0 < 0.92, which
indicates d ranges from 0.5×6.1 = 3.1 nm to 0.92×6.1 =
5.6 nm, given the contour length between grafting points
of 6.1 nm. From Eq. 3, the estimated range of internal
tensions is 1.2 pN < fint < 3.2 pN, consistent with the
measured value.

In applying Eq. 2 to our single molecule data, a con-
stant value of fint is enforced over a range of polymer
chain extensions, which contradicts the explicit depen-
dence of fint on extension through the parameter d in
Eq. 3. This can be resolved by substituting Eq. 3 into
Eq. 2; the resulting self-consistent expression for elastic-
ity can then be fit to the data. Indeed, this approach
more closely mirrors the Weiss molecular-field calcula-
tion, where the strength of the internal field is itself
slaved to the magnetic polarization. However, we find
that fitting the self-consistent expression gives nearly
identical results as using a constant internal tension. This
is likely because the form of the elasticity expression,
Eq. 2, indicates that fint will have minimal effect for
f � fint. Our data only minimally probe the f ≈ fint
regime; thus, while the experiment can detect the effect
of internal tension, it lacks the resolution to determine if
fint varies with extension.

From a broad perspective, our results quantitatively
demonstrate scale-dependent stiffness in a bottle-brush
polymer. At the highest applied forces f � fint, Eq. 2
indicates the chain will generate an entropic restoring
force with a persistence length, lp ≈ 2 nm, due solely to
main chain structure. As external force decreases, the in-
ternal tension begins to straighten the chain, increasing
the effective persistence length. We estimate the force
dependence of the effective persistence length, lp,eff (f),
by forcing Eq. 2 to have the same form as Eq. 1, giv-
ing lp,eff ≡ lp(1 + fint/f). At the lowest applicable
force, f ≈ fint, so the maximum effective stiffness is
lp,eff ≈ 2lp = 4 nm. This is roughly consistent with
the low-force analysis: using the ideal-chain relation be-
tween Kuhn and persistence lengths, b = 2lp, the low-
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force Kuhn length is 8 nm. Keeping in mind that the
scaling arguments we employ generally ignore numerical
prefactors, this value is close to the estimate b ≈ 20 nm
made from analyzing the transitions out of the Pincus
elastic regime.

In summary, we have demonstrated the utility of
single-molecule elasticity measurements and the additive-
tension elastic model in analyzing bottle brush structure.
Our measurements specifically support the scaling esti-
mates by Panyukov et al. [13] of the magnitude of the
internal tension. We believe that the methodology and
results demonstrated here will be useful in future stud-
ies of bottle brush behavior, including non-equilibrium
dynamics of bottle-brush polymers in flow.
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