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ABSTRACT 

We demonstrate a thermodynamic formulation to quantify defect formation energetics in an 

insulator under high electric field. As a model system, we analyzed neutral oxygen vacancies 

(color centers) in alkaline-earth-metal binary oxides using density functional theory, Berry phase 

calculations, and maximally localized Wannier functions. Work of polarization lowers the field-

dependent electric Gibbs energy of formation of this defect. This is attributed mainly to the ease 

of polarizing the two electrons trapped in the vacant site, and secondarily to the defect induced 

reduction in bond stiffness and softening of phonon modes. The formulation and analysis have 

implications for understanding the behavior of insulating oxides in electronic, magnetic, 

catalytic, and electrocaloric devices under high electric field. 
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Growing interest in understanding effects of large electric fields on the polarization, 

thermodynamics and kinetics of defects in insulating oxides is driven by emerging technologies 

including resistive switching memories [1,2], electrocaloric refrigeration [3], field assisted 

ceramic sintering [4], and controlling nanowire growth [5]. Additionally, giant electric fields on 

the order of 10 MV/cm arise naturally at oxide hetero-interfaces [6,7]. Point defects, particularly 

oxygen vacancies, play a prominent role in creating interfacial electric fields [8,9] and dictating 

the functional properties of these metal oxides [10]. The polarization response and 

thermodynamics of a defect-free insulating crystal under high electric field is well 

formulated [11–13]. However, the analogous high field effect on a defective crystal remained 

challenging to address [1,14,15]. 

Applying a homogeneous electric field E
r

 to an insulating crystal bends its electronic 

bands linearly, and polarizes the crystal uniformly. Thermodynamically, the former effect 

augments the differential of the internal energy of the crystal dU by a charge transfer or 

electrochemical work dqφ  [12]. Here, φ  is the electrostatic potential and q is the charge 

transferred. The second effect extends dU by what is known as the polarization work )( PE
rr

Vd• , 

where V is the crystal volume and P
r

 is its macroscopic polarization [12]. A perfect crystal is not 

affected by dqφ  since it is neutral. On the contrary, charged defect equilibria in an insulating 

defective crystal are affected strongly by dqφ . This electrochemical effect has been exploited to 

control the defect equilibria in CeO2  [16] and phase transitions in SrCoOx [17]. In contrast, 

polarization work is well analyzed for perfect crystals [18,19] and was invoked to predict electric 

field effect on the phase diagram of defect-free water [20] (ions are the defects of liquid 

water [21]) and on the phase transitions of defect-free HfO2 and ZrO2 [22]. However, there is no 

detailed and quantitative analysis for the impact of polarization work on a realistic insulator that 
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contains point defects. In particular, we seek a thorough analysis that spans from the global 

effects of electric field on the abundance of defects, down to the local effects on the single defect 

site. In this letter, we adopt the neutral oxygen vacancy ×
OV  in MgO, CaO, SrO, and BaO as a 

model system to study polarization effects. This class of oxides is important due to their 

abundance on Earth  [23], and their potential use in catalysis [24], electronics [25] and even as 

ferroelectrics [26]. The study of this neutral defect allows us to focus on polarization effects, as 

we intentionally preclude any contribution from electrochemical work. This defect, which is also 

known as the color center, is the canonical intrinsic defect in these oxides [27].  

In this Letter, using density functional theory (DFT) and modern theory of 

polarization [28] we reveal that the abundance of ×
OV is enhanced by the work of polarization. We 

attribute this enhancement to two factors; primarily the ease of polarizing the two electrons 

trapped in ×
OV , and secondarily the softening of some phonon modes and reduction in stiffness of 

bonds in the defective crystal containing ×
OV . These conclusions are supported by analyzing the 

polarization field of the defect, and the static dielectric permittivities of both the perfect and 

defective crystals. 

For an insulating metal oxide under electric field, the first differential of internal energy 

is: 

),( PE
rr

VddqdndNdNPdVTdSdU
k

eekkOO ∑ •+++++−= φμμμ      (1) 

where T, S and P are the temperature, entropy, and pressure, respectively. The chemical 

potentials Oμ , kμ , and eμ are those of oxygen, cation k, and electrons, respectively; and NO, Nk, 

ne, are the number of particles of oxygen, cation k, and electrons, respectively. The summation is 

taken over all types of cations in the oxide. A partial Legendre transform of U provides a 
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convenient expression in terms of natural variables that can be varied experimentally such as T, 

P, Oμ ,φ , and E
r

 [29]. Moreover, for theoretical convenience in treating charged defects, the 

transform also includes eμ  as a natural variable. We define the resulting thermodynamic 

potential as the electric Gibbs free energy and denote this by GE:  

.PE
rr

•−−−−+−= VqnNPVTSUG eeOOE φμμ      (2) 

Here, we restrict the analysis to T = 0 K, assume no electrostriction (hence ΔV = 0), and consider 

neutral defects (hence Δq = 0). In addition, following the arguments in reference [20] we do not 

consider depolarization fields, and as such E
r

 is the applied external field. Under such 

assumptions we define the electric Gibbs energy of formation, form
EG , of the neural defect ×

OV  to 

be:  

),()( perfdef
O

perfdefform
E VUUG PPE

rrr
−•−+−= μ     (3) 

where the superscripts def and perf denote the defective and perfect crystals, respectively. The 

first term is the defect formation energy, formU . The second term in Eq. (3) is the polarization 

work of primary interest herein, where we identify )( perfdefV PP
rr

− as the defect dipole moment, 

×
OV

pr . In fact, formU under constant electric displacement field ( D
r

), which corresponds to open-

circuit boundary conditions [19], has been computed previously for neutral defects in thin film 

Si [30] and TiO2 [31] using a sawtooth potential. However, under constant E
r

 which corresponds 

to closed-circuit boundary conditions [19], form
EG  is the relevant thermodynamic potential, and 

thus the work of polarization is crucial for accurate description of defect thermodynamics under 

high E
r

. (See Supplemental Material (SM) [32] section 1.d for more details.) 



5 
 

 We calculated the responses of rock-salt MgO, CaO, SrO, and BaO to external electric 

fields using DFT and Berry phase approach [33,34] as implemented in the QUANTUM 

ESPRESSO package [35]. Ultrasoft pseudopotentials [36–38] represented the interaction 

between core and valence electrons and the revised Perdew, Burke, and Ernzerhof functional for 

solids (PBEsol)  [39] described  the exchange correlation. E
r

 was applied along the cation-

oxygen bonds in [100] direction. By removing the arbitrariness in the polarization quantum, we 

identified the correct polarization branch for each of the perfect and defective crystals, and 

thereby quantified the work of polarization in Eq. (3) for formation of ×
OV . To analyze the local 

polarization field surrounding the defect site, we invoke the well-established relationship 

between Wannier centers and polarization [28,40]. Thus, we computed maximally localized 

Wannier functions  [40] from the original polarized Bloch states using the software 

WANNIER90 [41]. Further details are included in SM [32]. 

 The field dependence of the relative form
EG  of ×

OV  in the four oxides is shown in FIG. 1(a). 

form
EGΔ  decreases monotonically in all cases, though more pronounced in BaO. In FIG. 1(b) the 

dependence of formUΔ  is shown, and indicates a monotonic increase in MgO, CaO, and SrO, but 

an initial increase followed by a decrease for E
r

> 3 MV/cm in BaO. This behavior of formUΔ  is 

attributable to the static permittivities of the defective and perfect crystals as discussed later. The 

fact that form
EGΔ  does not follow the behavior of formUΔ shows clearly the importance of the 

polarization work term in Eq. (3), which favors the formation of the defect with increasing 

electric field by lowering form
EGΔ . 
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FIG. 1. (a) Relative electric Gibbs free energy of formation and (b) relative formation energy of 
×

OV  as a function of electric field in the studied oxides. 
 

As simple dielectrics, the four oxides exhibit linear EP
rr

−  relationships (Fig. S1 in 

SM [32]). Nonlinearities arise due to defects. FIG. 2(a) shows the field-dependent dipole 

moment of ×
OV  in units of Debye (D). To provide a convenient reference for polarity, we also 

show the zero-field gas-phase dipole moment of the highly polar water molecule, 0
2OHpr  of 

magnitude 1.86 D [42]. At zero-field, 0
×

OVp
r

=0 as dictated by the symmetry of the rock-salt lattice 

(see SM section 2  [32]). At finite field, both perfP
r

 and defP
r

 are parallel to E
r

. Thus a positive 

value of ×
OVp

r
 implies that perfdef PP

rr
>  and this is the case for the four oxides. In MgO, ×

OVp
r

 

remains linear with E
r

, and up to the highest field considered here its magnitude remains less 

than 0
2OHpr . Nonlinearity appears in CaO and SrO, in which ×

OV  can be as polar as gas-phase 

H2O at fields > 11.5 MV/cm and > 4.2 MV/cm, respectively. A more dramatic nonlinearity 

occurs in BaO where initially ×
OVp

r
 rises to 7.5 0

2OHpr  at a field of 3.6 MV/cm and then reduces 
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but remains positive up to the highest field considered. The initial sharp increase is due to a 

reduction in the stiffness of some bonds [43] caused by the creation of the defect. The reduction 

of ×
OVp

r
 at even higher E

r
 occurs when the bond stiffness around the defect increases relative to 

that of the perfect crystal under the electric field. We elaborate more on these aspects below.  

 

 

FIG. 2. (a) The field dependence of the dipole moment of ×
OV , ×

OVp
r

. For comparison the zero-

field dipole moment of the gas-phase water molecule, 0
2OHpr =1.86 D [42], is indicated by the 

black horizontal line. (b) Field dependent polarizability of ×
OV , ×

OV
α  . The inset focuses on the 

low-field polarizability in the case of BaO. 
 

To describe the spatial distribution of the polarization field around the defect site, we 

define the polarizability tensor of the defect Epα
rr

∂∂= def  which is scalar in this work. We note 

that our definition does not include dipole-dipole interactions [44,45] since we are concerned 

here with non-interacting defects. The field-dependent polarizability of ×
OV  is presented in FIG. 

2(b).  Magnitudes of α  for ×
OV  under low (zero)-field are 20, 46, 139, and 9175 Å3 in MgO, 

CaO, SrO, and BaO, respectively, increasing with the size of the host lattice (Section 1.e. in 
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SM [32]). There have been attempts to compute the low-field polarizability for the color center 

in alkali metal halides using model Hamiltonians, with reported values ranging between 10 and 

55 Å3 [46].  

The invariance of α  for ×
OV  in MgO as a function of E

r
mainly reflects the fact that the 

field stiffens the bonds in both the perfect and defective crystals at the same pace. In contrast, in 

CaO, SrO, and BaO, α is a decreasing function of E
r

, indicating that E
r

stiffens the bonds at a 

faster pace in the defective crystal. In BaO, α  becomes negative when most of the bonds in the 

defective crystal become stiffer than their counterpart in the perfect crystal as we explain later 

with FIG. 4.  

A natural question emerges from this discussion: why does work of polarization lower 

form
EG  of ×

OV ? Equivalently, why is the defective crystal more polarized compared to the perfect 

crystal? We propose two answers. First, ×
OV  is essentially a vacant site on the oxygen sublattice, 

containing two trapped electrons. The absence of the confining potential of the nucleus of the 

removed oxygen atom, together with the vacant space available to the two trapped electrons, 

facilitates more extensive polarization of these two electrons compared to the polarization of the 

oxide ion at this position in the perfect crystal. A similar argument is invoked to explain the 

larger polarizabilities of ions in the gas-phase relative to those in condensed matter [44,47]. 

Second, the creation of the vacancy softens some phonon modes and reduces the stiffness of the 

bonds around the vacancy site. These bonds with reduced stiffness are then more polarizable 

under electric field. We further support these two arguments with the subsequent analysis.  

The two electrons trapped in ×
OV  occupy an in-gap state derived from s-like orbitals of 

the surrounding cations (Section 1.f in SM [32]). The zero-field charge densities of these two 
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electrons in the four oxides considered are depicted schematically in FIG. 3(a-d). An electric 

field applied along the [100] or +x direction deforms the charge density of the two electrons such 

that it is depleted in +x and accumulated in –x as shown in FIG. 3(e-h) under a field of 21.8 

MV/cm. This electronic deformation is minimal in the case of MgO, and is very pronounced in 

BaO. 

 

 

FIG. 3. Visualizations of the charge density of the two electrons trapped in ×
OV  at zero field in (a) 

MgO, (b) CaO, (c) SrO, and (d) BaO. Similar visualizations at a field of 21.8 MV/cm in +x 
direction are shown for (e) MgO, (f), CaO, (g) SrO, and (h) BaO. Red, blue, cyan, green, and 
grey spheres represent O, Mg, Ca, Sr, and Ba ions, respectively. The yellow isosurfaces in (a-h) 
represent the electronic charge density and are taken at 15% of the maximum value in each plot. 
These visualizations were generated using the software XCRYSDEN [48]. (i-l) show high-field 
site-decomposed polarizability, iα , as a function of distance, r, from the defect site, in the case 
of (i) MgO, (j) CaO, (k) SrO, and (l) BaO. iα ’s were calculated by finite difference between 
field values of 18.2 and 21.8 MV/cm. 
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To quantify the contribution of each lattice site to the overall defect polarizability, we 

compute a site-decomposed polarizability iα  by invoking the Wannier centers belonging to this 

lattice site i such that ∑ ∈
=× supercelli iVO

αα (SM section 1c [32]). In FIG. 3(i-l) we present the high-

field iα  for the different lattice sites surrounding the defect. Note that iα at the defect site is the 

difference between the contribution of the two trapped electrons at the defect site in the defective 

crystal and the contribution of the oxide ion that occupies the very same site in the perfect 

crystal. It is evident that major contributors to the polarizability of ×
OV are the two electrons 

trapped in the defect site whose high-field iα  are on the order of 10 Å3. Even in BaO when the 

overall high-field α  for ×
OV  is negative, iα  remains positive for the two trapped electrons. This 

supports our first argument that these two trapped electrons are easier to polarize under electric 

field in comparison to the oxide ion. 

The calculated static permittivities of the perfect crystals perfε  and defective crystals defε  

are shown in FIG. 4. The low(zero)-field perfε  for the considered oxides are in reasonable 

agreement with experimental values  [49], with the exception of BaO  [49,50] (SM section 

3 [32]). The figure also shows that the application of E
r

reduces ε  monotonically for all cases. 

We attribute this decrease to the reduction in the contribution to ε  from the ionic relaxation 

because the clamped-ion contribution to ε is field-independent (SM section 3 [32]). The ionic 

relaxation contribution is inversely proportional to 2
iω , where iω  is the angular frequency of the 

zone-center phonon mode i  [51]. The field hardens the phonon modes (increases iω ), and so ε  

decreases. FIG. 4 also shows that defε  is generally greater than perfε  for all fields with the 

exception of BaO when E
r

> 3 MV/cm. defε  being greater than perfε  reveals that ×
OV  softens 
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some of the phonon modes and reduces the stiffness of bonds in the defective crystal. Since BaO 

has the largest lattice constant among the studied oxides, introducing ×
OV  brings BaO to the 

verge of being ferroelectric as evidenced from the large defε  at low field shown in FIG. 4(b). 

 

 

FIG. 4. Field dependent static permittivity of (a) the perfect crystal and (b) the defective crystal 
containing ×

OV for the studied oxides. The inset in (b) focuses on the defε of BaO at low fields.  
 

The reduction in bond stiffness introduced by ×
OV  facilitates bond deformation and stores 

more associated potential energy under E
r

. Macroscopically, note from Eq. 1 that 

EE
rr

)( 00 εεε −=∂∂ VU , where 0ε  is the vacuum dielectric permittivity. When defε > perfε , 

formUΔ  monotonically increases with E
r

; this is the case for all of these oxides except BaO at 

E
r

> 3 MV/cm, beyond which defε  becomes less than perfε . Note that perfdef εε − is essentially 

the defect polarizability (FIG. 2(b)) scaled by the crystal volume, Vα . Microscopically and 

using a harmonic approximation, the energy stored in a bond is ½ kΔx2, where k is the bond 

stiffness and Δx is the bond deformation. Since ×
OV  reduces the stiffness of some of the bonds, 
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this increases Δx of these bonds under E
r

and the overall stored potential energy. This explains 

both macroscopically and microscopically the behavior of formUΔ  in FIG. 1(b). Since the bonds 

with reduced stiffness in the defective oxides deform more readily under E
r

, this also means that 

these bonds are more readily polarized under E
r

. This supports our second argument related to 

the defective crystal being more polarized than the perfect crystal which eventually contributes 

to lowering form
EG  of ×

OV . 

The field itself hardens the phonon modes and increases the bond stiffness in both the 

perfect and defective crystals. ×
OV  on the other hand softens the phonon modes and reduces bond 

stiffness  in the defective crystal, and this effect of ×
OV  prevails against the field effect up to the 

highest field considered here, except for BaO when E
r

> 3 MV/cm. Since the defective BaO 

starts with much softer modes compared to the other oxides, the rate of mode hardening under 

the field is faster [52] for defective BaO and thus at 3 MV/cm both the perfect and defective BaO 

have effectively similar phonon mode frequencies and bond stiffness (See also SM [32] section 

5). 

Lastly, we emphasize that form
EGΔ is dictated by the relative polarizability of the defective 

crystal with respect to that of the perfect crystal. This relative polarizability cannot be expressed 

simply in terms of Born effective charge Z* of the cation in the perfect crystal. Although the 

qualitative order of form
EGΔ  in FIG. 1(a) matches the order 

7.24.23.20.2 **** +=<+=<+=<+= BaSrCaMg ZZZZ  that we calculated using density functional 

perturbation theory [53] for the perfect crystals, this does not necessarily hold for all oxides. We 

support this understanding by calculating the field-dependent form
EG  for ×

OV  in cubic SrTiO3 (See 
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SM section 4 [32] for details and discussion of potential phase transition in SrTiO3) . In spite of 

the very large 4.6* +=TiZ compared to Ti formal charge of +4 in SrTiO3 and compared to the 

cations in the binary oxides, the applied field does not lower form
EG  for ×

OV  in SrTiO3 to the same 

extent as it does in BaO. Perfect crystal SrTiO3 is highly polarizable as implied by *
TiZ , but so is 

SrTiO3 containing oxygen vacancies, and the net difference is less than the net difference in 

polarizability obtained in BaO. 

In summary, we investigated the effect of high electric fields on the polarization of 

neutral oxygen vacancies in alkaline-earth-metal binary oxides. We showed that, beyond the 

electrochemical effect that is classically null for a neutral defect, the polarization work lowers 

the electric Gibbs energy of defect formation. This was explained by the greater polarizability of 

the defective crystal compared to the perfect crystal, primarily due to the ease of polarizing the 

two electrons trapped in the vacant site and due to the reduction in bond stiffness. Accounting for 

polarization work is necessary for a better understanding of redox based memristive devices. 

Additionally, our analysis of field-dependent defect polarizability suggests that the assumption of 

fixed dipoles used in studying electrocaloric refrigerators  [54,55] can be relaxed. Future studies 

can also include implications of defect polarization under electric field on defect diffusion [56].  

This work was supported by the MRSEC Program of the National Science Foundation 

(NSF) under award number DMR – 1419807. This research used resources of the National 

Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported 

by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-

05CH11231. M.Y. thanks Prof. Paolo Giannozzi of University of Udine for helpful comments on 
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