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We propose and analyze two distinct routes toward realizing interacting symmetry-protected
topological (SPT) phases via periodic driving. First, we demonstrate that a driven transverse-
field Ising model can be used to engineer complex interactions which enable the emulation of an
equilibrium SPT. This phase remains stable only within a parametric time scale controlled by the
driving frequency, beyond which its topological features break down. To overcome this issue, we
consider an alternate route based upon realizing an intrinsically Floquet SPT phase that does
not have any equilibrium analogue. In both cases, we show that disorder, leading to many-body
localization, prevents runaway heating and enables the observation of coherent quantum dynamics at
high energy densities. Furthermore, we clarify the distinction between the equilibrium and Floquet
SPT phases by identifying a unique micro-motion-based entanglement spectrum signature of the
latter. Finally, we propose a unifying implementation in a one dimensional chain of Rydberg-dressed
atoms and show that protected edge modes are observable on realistic experimental time-scales.

The discovery of topological insulators—materials
which are insulating in their interior but can conduct
on their surface—has led to a multitude of advances at
the interface of condensed matter physics and materials
engineering [1–5]. At their core, such insulators are char-
acterized by the existence of non-trivial topology in their
underlying single-particle electronic band structure [6, 7].
Generalizing our understanding of topological phases to
the presence of strong many-body interactions represents
one of the central questions in modern physics. Some
of the simplest generalizations that have emerged along
this direction are symmetry protected topological (SPT)
phases [8–10], which represent the minimal extension of
topological band insulators to include many-body corre-
lations. Featuring short-range entanglement, SPT phases
do not exhibit anyonic excitations in their bulk, but nev-
ertheless possess protected edge modes on their surface;
as a result, they represent a particularly fertile ground
for studying the interplay between symmetry, topology,
and interactions.

While indirect signatures of certain ground state SPT’s
have been observed in the solid state [11–13], directly
probing the quantum coherence of their underlying edge
modes represents an outstanding experimental challenge.
In principle, cold atomic quantum simulations could offer
a powerful additional tool set—including locally-resolved
measurements and interferometric protocols—for prob-
ing the robustness of edge modes and systematically ex-
ploring their stability to specific perturbations [14–18].
Moreover, such platforms could also enable the controlled
storage and transmission of quantum information [19–
21]. Despite these advantages, and owing to the complex-
ity of typical model SPT Hamiltonians, it remains diffi-
cult to engineer and stabilize SPT phases in cold atomic
systems.

       ESPT (               )

a1 a2

λf(t)

hi

Pa
ir 

En
er

gy

Distance R

FSPT (             )
JH1

H2
f(t)

t0
λf

R
a1 a2 t

H1 H1H2 H2

hi

FIG. 1. A 1D array of atoms is trapped in an optical lattice or
tweezer array. Ising interactions for pseudo-spin states |↓〉 , |↑〉
are generated by optically coupling |↑〉 to Rydberg state |R〉
(solid blue arrows). Random fields hi are generated by a
spatially varying Raman coupling (dotted purple arrows) be-
tween |↓〉 and |↑〉. While emulating the ESPT phase requires
a dimerized chain with Ising couplings λf(t) of dynamically
switchable sign, the FSPT phase is simulated simply by al-
ternating between two Hamiltonians consisting of Ising inter-
actions (H1) and a disordered transverse field (H2).

One approach to this challenge is to emulate the com-
plex interactions giving rise to static, equilibrium SPT
(ESPT) phases by periodically driving a simpler Hamil-
tonian at frequencies much larger than its intrinsic energy
scales [22]. In addition to this approach, seminal results
on classifying driven (Floquet) phases [23–28] have also
shown that there exist Floquet-SPT’s (FSPT) which are
inherently dynamical and have no static analogue. In-
terestingly, such an FSPT can be realized at driving fre-
quencies that are comparable to the energy scales of the
bare Hamiltonian.

The power of periodic driving for engineering topo-
logical phases has been extensively explored in cold-
atom [29–31], solid-state [32–34], and photonic [35, 36]
systems. For cold atoms, where Floquet control has
so far been applied only to single-particle band struc-
tures [29–31, 37–39], recent advances in optically con-
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trolling interactions [40–47] offer new opportunities for
accessing strongly correlated phases [48–51]. Notably,
coherent spin-spin interactions with a range of several
microns [42, 43, 46, 47] can be introduced via Rydberg
dressing [42–44, 46, 47, 52–55]. However, prospects for
modulating such dressing light in order to Floquet engi-
neer many-body Hamiltonians has remained largely un-
explored.

This owes, in part, to the difficulty of generating quan-
tum coherent order in an interacting Floquet system
which will typically absorb energy from the driving field,
eventually heating to a featureless infinite temperature
state [56, 57]. This difficulty is further exacerbated for
isolated atomic systems, where the lack of coupling to an
external bath renders the system incapable of releasing
excess energy and entropy [58]. A fruitful strategy for
combating such heating is to harness many-body local-
ization (MBL) [23, 59–62], which has been predicted to
stabilize quantum coherent behavior without the need for
stringent cooling or adiabatic preparation of low temper-
ature many-body states [19–21, 63].

In this Letter, we propose to exploit periodically driven
interactions to realize two distinct non-equilibrium MBL
SPT phases in a one-dimensional array of cold atoms
(Fig. 1). Driving the interaction term of a transverse-field
Ising model (TFIM) enables the emulation of an ESPT
whose edge modes are protected by an emergent Z2×Z2

symmetry [22]. This phase remains stable only within a
parametric time scale controlled by the driving frequency,
beyond which its topological features break down. Alter-
natively, toggling between Hamiltonians with solely Ising
interactions or purely transverse fields yields an intrin-
sically dynamical FSPT which has no equilibrium ana-
logue. We explore the stability of both phases to long-
range interactions and provide a detailed experimental
blueprint using Rydberg-dressed atoms.

ESPT Phase—Inspired by pioneering work on emulat-
ing static phases in driven systems [22, 32, 33, 64–68],
we first consider the realization of a many-body localized
version of the Haldane phase [69]. This SPT phase can be
protected by a discrete dihedral symmetry, Z2 ×Z2, and
exhibits boundary modes that are odd under the sym-
metry; these edge modes behave as decoupled spin-1/2
degrees of freedom that are robust to any perturbation
which preserves the symmetry.

We begin by examining the robustness of the edge
modes in a periodically driven and dimerized spin chain
(Fig. 1):
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where N represents an even number of spins, σαi are the
Pauli operators on site i, λ2k+1 = λ1, λ2k = λ2 (with
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FIG. 2. ESPT phase—(a) Fα(t) for N = 10 spins with
ω = 100, Vx = 0.05, Vy = 0, λ1 = 1.54 and λ2 = 0.69,
yielding b(λ1, λ2)/a(λ1, λ2) ∼ 10. Almost overlapping dot-
ted lines represent the clean undisordered case (black and
blue for F z and F x, respectively). Solid lines correspond
to strong on-site disorder, with thick black and blue lines
for F z and F x in the dimerized case and thin solid yellow
and red lines for F z and F x in the un-dimerized case. (in-
set) Ratio b(1, λ2)/a(1, λ2) in the dimerized (solid blue) and
the un-dimerized (dotted red) models. The SPT phase corre-
sponds to b/a > 1 (delimited by the dotted black line). (b)
T ∗2 as a function of frequency and system size [71]. As ω is
increased for Vx = 0.05 (circles), T ∗2 saturates consistent with

being bounded by T ∗2 ∼ min(O(ω), eO(N)). Adding generic
interactions, Vy

∑
i σ

y
i σ

y
i+1 with Vy = 0.2 (squares), leads to

a breakdown of the edge coherence for all parameters.

[70]. For Vx = 0, the model is non-interacting and ex-
hibits edge dynamics which never decohere [22]. Here, we
first verify that the SPT phase remains stable under the
addition of short-range interactions Vx 6= 0 that preserve
the dihedral symmetry (generated by products of σxi on
the even and odd sites). We then assess the effects of
more generic, longer range, interactions.

In the limit of large driving frequencies ω, the dynamics
are described by an effective time-independent Floquet
Hamiltonian, HF, which can be constructed perturba-
tively in orders of 1/ω using a Magnus expansion [72–74].
At leading order, we obtain the time-averaged Floquet
Hamiltonian [71]

H
(0)
F =

N∑
i=1

hia(λ1, λ2)σxi −
N−1∑
i=2

hib(λ1, λ2)σzi−1σ
x
i σ

z
i+1 (2)

+ VxJ0(2λ2)(σx1σ
x
2 + σxN−1σ

x
N )

+ Vx

N−2∑
i=2

[
c(λi+1)σxi σ

x
i+1 + d(λi+1)σzi−1σ

y
i σ

y
i+1σ

z
i+2

]
,

where J0(x) is the Bessel function of the first
kind, a(λ1, λ2) = 1

2 [J0 (2(λ1 − λ2)) + J0(2(λ1 + λ2))],
b(λ1, λ2) = J0(2(λ1 − λ2)) − a(λ1, λ2), c(λ) =
1
2 [1 + J0(4λ)], and d(λ) = 1− c(λ). We have absorbed a

factor of J0(2λ1)
a(λ1,λ2) in the definitions of h1 and hN [75].

A few remarks are in order. First, the periodic driv-
ing, f(t), effectively generates multi-spin interactions

[Eqn. (2)] [22]. Secondly, while H
(0)
F exhibits a Z2 × Z2
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symmetry, the parent Hamiltonian [Eqn. (1)] possesses
only a smaller Z2 symmetry group, indicating that the

“emergent” dihedral symmetry of H
(0)
F must be broken

at higher orders in the Magnus expansion [71]. Finally,
the Vx = 0 limit of Eqn. (2) describes a pair of decou-
pled 1D p-wave superconductors [76] and harbors two
simple limits: for a(λ1, λ2) > b(λ1, λ2), the ground state
is a trivial insulator, while for a(λ1, λ2) < b(λ1, λ2), the
ground state is a bosonic SPT insulator. The key sig-
nature of this latter ESPT phase is the existence of pro-
tected modes localized around the boundary of the sys-
tem. Crucially, the λ1, λ2-dimerization of the Ising in-
teraction enables us to arbitrarily tune the correlation
length of the edge mode (inset of Fig. 2a), leading to
coherent dynamics with significantly higher fidelity than
those of the un-dimerized TFIM [22].

To characterize the edge coherence, we introduce the
trace fidelity Fα(t) = 1

ZTr
[
e−βH(t)Σα(t)Σα(0)

]
as a

function of time, where Z is the partition function, β =
1/kBT , and Σα are the zero correlation length edge op-
erators Σx = σx1σ

z
2 , Σy = σy1σ

z
2 , and Σz = σz1 . This auto-

correlation function at infinite temperature will serve as
a proxy for the coherence time. Furthermore, since we
are interested in coherent MBL-protected dynamics at fi-
nite energy densities, from hereon we add strong disorder
to the system via random on-site fields hi [77].

As alluded to above, there are two mechanisms of edge
spin decoherence introduced by interactions: 1) scat-
tering with thermal excitations and 2) breaking of the
Z2 × Z2 symmetry. While the first is ameliorated via
MBL (Fig. 2a), the second is intrinsic to the stroboscopic
approach—the ESPT is stable only up to a finite para-
metric time scale, T ∗2,symm ∼ (h2/ω)−1, beyond which the
protecting symmetry is broken.

The first effect is reminiscent of similar discussions in
the static context [19–21], where disorder can localize
thermal bulk excitations and suppress scattering. Since
the edge operators are odd under the Z2 × Z2 symme-
try, their dressed MBL-counterparts will not appear in
the effective “l-bit” Hamiltonian [60, 61] and dephasing
occurs solely via coupling to the other edge mode [21] on
a time scale that is exponential in system size, T ∗2,MBL ∼
eO(N)[78], as depicted in Fig. 2b. Thus, so long as the

effective dynamics are described by H
(0)
F , one finds that

even in the interacting, periodically driven system, disor-
der can lead to a revival of the coherence time (Fig. 2a).

This MBL enhancement of edge coherence is cut off

by the fact that the first order Magnus correction, H
(1)
F ,

breaks the Z2 × Z2 symmetry. For time scales t >
T ∗2,symm, even though bulk excitations remain many-body
localized, there is no symmetry protecting the edge op-
erators, which can then scatter locally. Thus, for a finite
size system, decoherence in the presence of interactions
that preserve the dihedral symmetry occurs on a time
scale T ∗2 ∼ min(T ∗2,MBL, T

∗
2,symm) ∼ min(eO(N),O(ω/h2))
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FIG. 3. FSPT phase—(a) The 〈r〉 ratio as a function of the
power law exponent p for a chain with periodic boundary con-
ditions. The hi’s are sampled from the uniform distribution
[0.1, 0.9] and T = π (in units of J = 1). There is an MBL-
delocalization phase transition around pc ≈ 3.5. (inset) T ∗2 as
a function of N , where the edge coherence is fit to ∼ N4. (b)
The entanglement spectrum micro-motion for N = 12. The
parameters (p, T, J,W ) are: (4, π, 1, 1) for the SPT; (1, π, 1, 1)
for the thermal behavior; (4, π, 0.05, 0.8) for the paramagnet;
p = 4, T = π, J = 0.5, h ∈ [0.5, 1] for the spin glass. (inset)
Mutual information I(i, j) = Si + Sj − Sij (where S is the
von Neumann entropy) within the SPT phase: I(1, j) (red
circles) and I(6, j) (blue squares) [71]. (c) F y(t) and F z(t)
for the edge and the bulk in a system of N = 10 spins for
the model in Eqn. 3. The bulk curves are almost overlapping.
(d) Same as in (c), but with an additional term, Vx

∑
i σ

x
i σ

x
i+1

(Vx = 0.3) added to H1.

as illustrated in Fig. 2b.

The addition of a more generic symmetry-breaking in-
teraction term, such as Vy

∑
i σ

y
i σ

y
i+1 or a long-range

power-law tail, breaks the Z2 × Z2 symmetry at lowest
order in the Magnus expansion. In this case, there is no
parametric time scale where we expect ESPT dynamics
(i.e. T ∗2,symm ∼ O(1)), and the edge modes rapidly deco-
here via local scattering (Fig. 2b).

FSPT Phase—To obtain edge modes with coherence
that persists to arbitrary times and is robust to long-
range interactions, we now turn to the realization of an
intrinsically Floquet SPT phase. We engineer an FSPT
protected by both Z2 symmetry and periodic driving
which cannot exist in equilibrium [24–28]. Consider the
stroboscopic Hamiltonian

H(t) =


H1 =

∑
i6=j

J

|Ri −Rj |p
σzi σ

z
j if 0 ≤ t < T/2

H2 =

N∑
i=1

hiσ
x
i if T/2 ≤ t < T,

(3)
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where Ri = i is the position of the ith spin and hi ∈
[0,W ]. The protecting symmetries are the product of σx
on all sites (Z2) and discrete translations in time (Z).
The unitary evolution under H(t) is given by U(t) =

T exp
(
−i
∫ T

0
H(t)dt

)
and the Floquet operator by U =

U(T ). Building upon previous studies [23, 65, 79, 80], we
expect to observe the FSPT phase at JT

2 ≈ π
2 [71].

Since the disorder strength is limited to W . 1/T by
the periodic structure of the binary drive [71], the system
cannot be localized for arbitrarily strong interactions. By
computing the level-statistics ratio 〈r〉 [81] as a function
of the power-law exponent p (Fig. 3a), we observe a clear
MBL-delocalization phase transition at pc ≈ 3.5 [82]. For
the remainder of the text, we set p = 4 as a computa-
tionally tractable model within the MBL phase.

To probe the nature of edge coherence in the FSPT
phase, we again compute the trace fidelity Fα =
1

2N Tr [σαi (t)σαi (0)]. As depicted in the inset of Fig. 3a,
and similar to the ESPT phase, the edge spin exhibits
a significantly longer coherence time than bulk spins.
However, a crucial difference emerges in the scaling with
N . For long-range interactions, the coherence time of
the ESPT phase scales independently of the system size,
T ∗2 ∼ O(1), whereas the FSPT exhibits a quartic scaling
T ∗2 ∼ O(N4) (owing to the 1/R4 power-law interactions
between the two edge modes), as shown in the inset of
Fig. 3a).

To further distinguish between the topological features
of the ESPT and FPST phases, we introduce a novel
micro-motion-based entanglement spectrum signature of
the latter [26]. In particular, for an eigenstate |ψ〉 of
the Floquet operator U , we compute the entanglement
spectrum, {ηi(t)}, associated with the half-chain cut of
|ψ(t)〉 = U(t) |ψ〉 for 0 ≤ t ≤ T . By Schmidt decompos-

ing |ψ(t)〉 =
∑2N/2

i=1 ηi(t) |Lefti(t)〉⊗|Righti(t)〉, we obtain
{ηi(t)} across the two sets, {|Lefti(t)〉} and {|Righti(t)〉},
which span the Hilbert spaces of the left and right halves
of the chain. Unlike in equilibrium, where a single snap-
shot of the entanglement spectrum shows the existence of
topological edge modes, we find that, at any given time t,
the spectrum is trivial and there is no signature of FSPT
order (Fig. 3b). However, by following the micro-motion
evolution of the spectrum over a single Floquet period,
we can robustly identify the topological signature of the
FSPT phase [26].

To see this, we note that the entanglement spectrum
is gapped at t = 0 and t = T which allows us to asso-
ciate an SPT invariant to each non-trivial band—namely,
the Z2 symmetry charge of the corresponding Schmidt
states, 〈Lefti(t)|

∏
j σ

x
j |Lefti(t)〉 = ±1. There exists a

band crossing during the micro-motion (Fig. 3b), point-
ing to the fact that the charges of each band are flipping
during a Floquet period. This difference between the ini-
tial and final Z2 charges cannot be altered without closing
the entanglement gap, suggesting that the band-crossing

is, in fact, a robust feature of FSPT order. Indeed, this
non-trivial behavior is absent in the paramagnetic and
spin glass phases (Fig. 3b).
Experimental realization—Both the ESPT and FPST

Hamiltonians can be implemented in a chain of Rydberg-
dressed alkali atoms [43, 44, 46, 49, 50] trapped in a 1D
optical lattice or tweezer array [83, 84] (Fig. 1). The
spin degree of freedom is formed by two ground hyperfine
states, with a resonant Raman coupling of spatially vary-
ing Rabi frequency hi simulating the on-site transverse
fields. Random fields can be formed by optical speckle
disorder or with a spatial light modulator.

Strong spin-spin interactions are introduced by cou-
pling state |↑〉 to a Rydberg state |R〉 with an off-resonant
laser field of Rabi frequency Ω and detuning ∆ > Ω. The
result is an effective (dressed) Ising interaction [43, 55]

HI = − Ω4

8∆3

1

1 + |Ri −Rj |6/R6
c

σzi σ
z
j , (4)

where the interaction range Rc = (−C6/∆)
1/6

depends
on the van der Waals coefficient C6 of the Rydberg-
Rydberg interaction and is typically on the few-micron
scale. At fixed lattice spacing a1, the ratio of nearest to
next-nearest-neighbor couplings is set by Rc (Fig. 1).

While the Rydberg dressing is subject to dissipation
from the finite lifetime Γ−1 of the Rydberg state [43, 44],
the interaction-to-decay ratio can be large [49, 50] in a
1D system. At fixed Rabi frequency Ω, the ratio of the
Ising coupling J to the lifetime γ = (Ω2/4∆2)Γ of the

Rydberg-dressed state is limited to J/γ = Ω2

2∆Γ < Ω
Γ .

This limit is set by the condition Ω2/∆2 � 1 that the
Rydberg-state population within the radius Rc ∼ a1 be
small, so that the perturbative result of Eq. 4 holds. At
realistic laser power on the 6S1/2 → nP3/2 transitions
(with n & 40) in cesium [85], parameters (Ω,Γ) ≈ 2π ×
(4, 0.002) MHz allow for large coupling-to-decay ratios
J/γ . 103.

To observe the FSPT phase, we envision initializing
the system in a product state with high energy density
and letting it undergo unitary time evolution. After each
Floquet period T , one measures the spin-spin autocorre-
lation function 〈σα(nT )σα(0)〉 for both an edge and bulk
spin. Numerics (Fig. 3c) for N = 10 atoms indicate that
a time t ∼ 102/J suffices to observe a significant differ-
ence between the bulk- and edge-spin fidelities. The dif-
ference can be observed over an even shorter time scale
t ∼ 30/J (Fig. 3d) by adding a decohering interaction
term Vx

∑
i σ

x
i σ

x
i+1 to H1 in Eqn. 3. Experimentally, Vx

can be introduced by simultaneously dressing both states
|↓〉 and |↑〉 [50] to generate flip-flop processes ∝ σ+

i σ
−
i+1.

To experimentally verify the distinct advantages of the
intrinsically Floquet SPT phase, our scheme can be mod-
ified to emulate the ESPT for comparison. Realizing the
ESPT Hamiltonian requires alternating stroboscopically
between ferromagnetic and antiferromagnetic Ising inter-
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actions by simultaneously changing the signs of the de-
tuning ∆ and of the van der Waals coefficient C6. While
a conceptually simple approach is to switch between two
different laser fields detuned by ∆2 ≈ −∆1 from two
different Rydberg states |R2〉 , |R1〉, a more practical ap-
proach may be to dynamically control the sign of C6 with
an electric field [86]. We detail concrete level schemes for
an implementation in cesium in [71].
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