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Abstract

The pair potential for helium has been computed with accuracy improved by an order of mag-

nitude relative to the best previous determination. For the well region, its uncertainties are now

below 1 millikelvin. The main improvement is due to the use of explicitly correlated wave functions

at the nonrelativistic Born-Oppenheimer (BO) level of theory. The diagonal BO and the relativistic

corrections were obtained from large full configuration interaction calculations. The nonadiabatic

perturbation theory was used to predict the properties of the halo state of helium dimer. Its

binding energy and the average value of interatomic distance are found to be 138.9(5) neV and

47.13(8) Å. The binding energy agrees with its first experimental determination of 151.9(13.3) neV

[Zeller et al., PNAS 113, 14651 (2016)].
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Helium is expected to become an important medium in determining thermodynamic

metrology standards and the future system of SI units [1, 2]. Several elements of such stan-

dards will be established by ab initio quantum mechanical calculations [3–7]. An important

theory input is the helium pair potential. Its knowledge is required to account for the im-

perfection of helium gas and the necessary extrapolations to zero pressure [2]. The more

accurate this potential is, the smaller will be the uncertainties of the resulting standards.

There are other reasons of interest in the helium pair potential. The dimer composed of

4He atoms, 4He2, has a single very weakly bound vibrational state—an example of a quantum

halo state—where atoms move mainly in the classically forbidden tunneling region of the

configuration space [8]. This state was the subject of several experimental investigations

[9–14]. We present here the development of a new potential with uncertainties reduced by

an order of magnitude compared to the previous most accurate determination [15]. This

potential and the nonadiabatic perturbation theory [16], accounting for the coupling of the

electronic and nuclear motion, are used to obtain an accurate theoretical prediction of the

properties of the halo state.

The potential of Ref. [15] contained the Born-Oppenheimer (BO) component from

Ref. [17]. Its uncertainty, amounting to several millikelvin (mK) in the well region, was due

to the slow convergence of a part of the wave function expanded in terms of orbital products.

Since it is impossible to converge the orbital expansion sufficiently well [18], we now follow

Refs. [19, 20] and expand the BO wave function using the four-electron explicitly correlated

Gaussian (ECG) basis. Several improvements to the approach of Refs. [19, 20] that have

been made recently [21–23] enabled us to perform highly accurate ECG calculations for 46

values of the interatomic distance R.

In Ref. [15], the BO potential of Ref. [17] was combined with the adiabatic (diagonal

BO), relativistic, and quantum electrodynamics (QED) contributions, as well as with an

appropriate retardation correction [24]. Its uncertainties were almost entirely determined

by the uncertainties of the BO component. With the much improved BO potential computed

in the present work, the accuracy of the adiabatic and relativistic components from Ref. [15]

became insufficient. Therefore, we decided to recompute these components using different

methodologies, providing higher accuracy and better error control.

Recently, the wave function of 4He2 has been measured via the Coulomb explosion tech-

nique [14], which enabled the first experimental determination of its very small binding
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energy (151.9±13.3 neV). The most precise calculation for this state was performed [15]

in the adiabatic approximation giving the binding energy D0=136.6±2.9 neV when nuclear

masses are used to solve the vibrational problem (as required by the mathematical deriva-

tion of the adiabatic approximation) or 139.2±2.9 neV when the atomic masses are used

(as suggested by physical intuition). The average interatomic separation 〈R〉 obtained with

these masses were 47.50±0.46 Å and 47.09±0.46 Å, respectively, in a minor disagreement

with the experimental value of 52±4 Å [13]. To resolve this ambiguity, in the present work

we have used the nonadiabatic perturbation theory [16] to account for the coupling of the

electronic and nuclear motion. This requires the calculation of an effective R-dependent

vibrational mass and of a nonadiabatic correction to the potential [16]. We have developed

methods to compute these quantities for many-electron diatomics and report the results

in this communication. To our knowledge, such nonadiabatic calculations have not been

performed earlier for systems with more than two electrons.

The ECG wave function employed by us has the form

Ψ = AΞ(1 + ı̂)

[
c0φ0 +

K∑
k=1

ck φk(r1, r2, r3, r4)

]
, (1)

where A is the antisymmetrizer, Ξ is the product of two-electron singlet spin functions, ı̂ is

the inversion through the center of He2, and φk, k>0, are the ECG basis functions:

φk(r1, r2, r3, r4) =
4∏
i=1

e−αki|ri−Xki|2
4∏

i>j=1

e−βkij |ri−rj |
2

. (2)

The linear parameters ck and the nonlinear ones αki, βkij, and Xki=(0, 0, Xki) are optimized

by minimizing the expectation value of the electronic Hamiltonian Ĥel. The term c0φ0

is included to approximate the product of spinless helium atom wave functions. When

performing the nonlinear optimization of Ψ, we used the following fixed form of φ0

φ0 = S
L′∑
l=1

bl φ
A
αlβlγl

(r1, r2)φ
B
α′
lβ

′
lγ

′
l
(r3, r4), (3)

where S=(1 + ı̂P13P24)(1 +P12)(1 +P34), with Pij permuting the coordinates of the ith and

jth electron, and

φXαlβlγl
(r1, r2) = e−αl|r1−X|2e−βl|r2−X|

2

e−γl|r1−r2|
2

, (4)

with X=(0,0,0) for X=A and X=(0,0,R) for X=B. The parameters of φ0 were optimized

by minimizing the expectation value of the sum ĤA+ĤB of the atomic Hamiltonians [23]. We
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have set L′=6788, obtaining the energy of two noninteracting helium atoms within 0.16 mK

of the exact value of Ref. [25]. After all nonlinear parameters in φk, k>0, were optimized

the final energy was computed with φ0 represented by the product of helium wave functions

expanded in terms of 337 symmetrized ECG’s of the form of Eq. (4). The energy of two

helium atoms computed with this form of φ0 differs from the exact one by 0.02 mK.

The calculations were first performed for the same 16 internuclear distances as in Ref. [17],

ranging from 1 to 9 bohr. For each distance, K=2400, 3394, 4800, and 6788 term expansions

of the form of Eq. (1) were optimized. Attempts to fit analytic functions to the computed

interaction energies have shown that the assumed grid density is insufficient to obtain a fit to

within the new, decreased uncertainty. Therefore, we performed calculations at additional

30 values of R located at 0.33 and 0.67 of the distances between the existing 16 points

(with R rounded to 0.01 bohr). The nonlinear parameters for the additional values of R

were obtained from the wave function of the nearest R from the original set, employing the

scaling procedure proposed in Ref. [26].

The interaction energy, E(K), was obtained by subtracting the exact atomic energies [25]

from the calculated dimer energy, so E(K) is a rigorous variational upper bound. To extrapo-

late to the complete basis set (CBS) limit, we employed an empirical observation that the ra-

tio ηK=∆K/
√
2/∆K , with ∆K=E(K)−E(K/

√
2), is approximately independent of K. Disre-

garding a few outliers, we found that the values of ηK are between 1.32 and 3. We have chosen

η=1.32, to determine the extrapolated interaction energy Eextrp = E(6788) + ∆6788/(η− 1).

This choice, resulting in the largest magnitude of the CBS correction, compensates for the

incompleteness of the minimization for K=6788. The difference of energies extrapolated

with η=3 and η=1.32 was taken as the uncertainty of Eextrp.

The CBS-extrapolated values of the BO interaction energies and their uncertainties are

listed in Table I for a subset of distances. The data for other distances are given in Sup-

plementary Information (SI) [27]. The BO energies reported in Ref. [5] are presented for

comparison. At all 16 distances where energies from both sets are available, the uncertain-

ties overlap, so both sets of results are consistent. However, the present uncertainties are

tighter by about an order of magnitude (from 8 to 23 times for R<7 bohr and from 2.5 to

6 times for other distances), except at 5.6 bohr.

In Ref. [5], the adiabatic correction Ead(R) was computed via numerical differentiation of

the electronic wave function with respect to nuclear positions. In our work, we employed the
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TABLE I. Components of the 4He dimer potential in kelvin (1 hartree=315775.13 K) with R in

bohr (1 bohr=0.529177 Å) and their sum V = VBO + Vad + Vrel + VQED. Results for other values

of R and the components of Vrel are listed in the SI [27].

R VBO VBO, Ref. [5] Vad Vrel VQED V V , Ref. [5] Vret

3.0 3767.7341(38) 3767.681(71) 1.3847(15) −0.2125(17) 0.09376(22) 3769.000(4) 3768.94(7) 0.00045

4.0 292.58201(86) 292.570(15) 0.10585(17) 0.03322(21) 0.00891(5) 292.7300(9) 292.719(15) 0.00025

5.0 −0.47114(36) −0.4754(65) −0.006992(10) 0.024012(25) −0.00106(3) −0.4552(4) −0.460(7) 0.00015

5.6 −11.00072(20) −11.0006(2) −0.008905(10) 0.015403(15) −0.001351(23) −10.99557(20) −10.9955(5) 0.00012

6.0 −9.68079(16) −9.6819(23) −0.007170(4) 0.011438(11) −0.00120(4) −9.67772(16) −9.6788(23) 0.00010

7.0 −4.62260(10) −4.6225(6) −0.0033168(24) 0.005768(4) −0.00074(3) −4.62089(11) −4.6208(6) 0.00007

9.0 −0.98971(6) −0.98984(15) −0.0007328(8) 0.0019306(6) −0.000316(29) −0.98883(7) −0.9890(2) 0.00004

12.0 −0.16592(2) −0.0001261(1) 0.0005768(1) −0.000133(26) −0.16560(3)a −0.16560(3) 0.00002

a Computed with the same value of VBO as in Ref. [5] (given in the third column).

method proposed by Pachucki and Komasa [16]. In a space-fixed reference frame, Ead(R) is

expressed as [16]

Ead(R) =
h̄2

mn

〈∇RΨ|∇RΨ〉+
1

4mn

〈Ψ|P 2|Ψ〉, (5)

where R is the vector joining the nuclei, mn is the nuclear mass, and P is the total electronic

momentum operator. To avoid the cumbersome differentiation of Ψ with respect to R, we

obtained ∇RΨ by solving the equation [16]

(Ĥel − EBO)∇RΨ = −(∇RĤel)Ψ. (6)

The adiabatic correction to the potential is defined as Vad(R) = Ead(R)− 2EA
ad, where EA

ad

is the atomic adiabatic correction [28]. When Ead(R) and EA
ad are computed with the same

basis, Vad(R) vanishes at large R in accord with its known asymptotic expansion [29].

The solution ∇RΨ of Eq. (6) was obtained by representing ∇RΨ and Ψ as full configu-

ration interaction (FCI) expansions and solving linear equations for the CI coefficients. By

comparing with accurate ECG results, available at small R [5], we found that the orbital

basis sets dXZ from Ref. [5] lead to fast convergence provided that they are augmented by

one set of p functions obtained by taking the nuclear gradient of the contracted, 19-term s

orbital already present in all dXZ bases of Ref. [5]. The dXZ bases augmented in this way

will be referred to as the dXZcp bases.

Vad(R) was calculated using the dXZcp bases up to X=6 for 55 values of R, the same

46 values as in the case of the BO potential and, additionally, for 9 larger distances. The
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largest FCI calculations employed the wave functions with ∼4 × 108 determinants (at D2h

symmetry). All necessary integrals and Hartree-Fock orbitals were computed using the

Dalton 2.0 package [30], while the adiabatic corrections were obtained using an FCI code

written for the purpose of this work. The values of Vad(R) were extrapolated to the CBS

limit assuming the X−3 decay of the error. As our recommended values of Vad(R), we took

the CBS limit based on the d5Zcp and d6Zcp results with uncertainties estimated as the

absolute values of the difference between the extrapolated and the d6Zcp result. Combining

the new numerical approach and the increased size of basis sets (in Ref. [5], bases up to

X=4 were used), we reduced the uncertainty of the adiabatic corrections by an order of

magnitude.

The relativistic component, Vrel(R), of the potential V (R) was computed for 55 values

of R using the same method as in Ref. [5], except that we employed basis sets with larger

cardinal numbers X and added p functions to improve the wave function in the vicinity of

nuclei. Specifically, we started with the modified dXZ basis sets of Ref. [5] (containing 21

uncontracted s functions) and augmented them by n≤5 “tight” p functions with exponents

larger than those already present in the original dXZ basis. The bases obtained in this way

will be denoted as dXZ+np. The exponents of these “tight” p functions are given in the

SI [27].

To calculate expectation values of the relativistic operators, we used a composite ap-

proach. The main contribution (over 90%) was calculated at the coupled cluster CCSD(T)

level of theory [31] using large basis sets (up to d8Z+5p) whereas the remaining contribu-

tion was included applying an additive FCI correction computed with smaller bases (up to

d6Z+5p). The CCSD(T) calculations were performed using the Dalton 2013 package [32],

whereas at the FCI level we used a program written for this work. For each internuclear

distance, the relativistic potentials were obtained as the difference between the dimer and

atomic expectation values, the latter calculated with the dimer basis to remove the basis-set

superposition error.

To perform CBS extrapolations, we employed the convergence laws established in Ref. [5],

i.e., we assumed that upon increasing the cardinal numberX, the error of the Breit correction

decays as X−3/2 and the errors of the remaining corrections as X−1. The fixed-n extrapo-

lation from bases d(X − 1)Z+np and dXZ+np will be denoted as d(X − 1, X)Z+np. We

found that the effect of the increased flexibility of the new dXZ+np bases on the relativistic
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corrections is small, especially for n>3, although it improves somewhat the convergence of

the extrapolations. As our recommended CCSD(T) component of the relativistic corrections

we took the d(7,8)Z+5p extrapolation with uncertainties estimated as the absolute value of

the difference between the d(7,8)Z+5p and d(6,7)Z+5p extrapolations. Similarly, at the FCI

level, we used the d(5,6)Z+5p extrapolation with uncertainties estimated as the absolute

value of the difference between the d(5,6)Z+5p and d(4,5)Z+5p extrapolations. To check

the basis set convergence of the FCI correction, we also carried out FCI calculations for three

distances, R=2, 5.6, and 12 bohr using the d7Z+2p basis set which consists of 512 functions

(and generates ∼ 2 × 109 D2h-adapted determinants). The results of the FCI extrapola-

tions d(6,7)Z+2p for R=5.6 and 12 bohr (where the FCI corrections are most relevant), are

contained within the proposed error bars which shows that our uncertainty estimates are

reliable.

The calculated one- and two-electron Darwin terms together with the ECG results for

the Araki-Sucher term, VAS(R), from Ref. [5] were employed to compute the leading (third-

order in the fine structure constant α) QED correction, VQED(R), using the formulas from

Ref. [5]. Using Eq. (19) from Ref. [5], we also estimated the α4 QED correction and found

that it is at least 5 times smaller than the uncertainties of V (R). Therefore this correction

was neglected.

The uncertainties of the components of Vrel(R) and of VQED(R), as well as uncertainties of

all components of V (R), were added in squares. Compared to the results from Ref. [5], the

uncertainties of Vrel(R) were reduced by a factor 1.4–17 depending on R. The uncertainties of

VQED(R) remain unchanged as they are dominated by the uncertainty of the Araki-Sucher

component. Also the retardation correction, appropriate for the potential including the

leading QED term [24], is the same as in Ref. [5]. As seen in Table I, the uncertainties

assigned to all calculated post-BO corrections to the interaction potential are comparable

or smaller than the uncertainties of the BO potential.

The computed values of VBO(R), Vad(R), Vrel(R), and VQED(R) were fitted to the analytic

functions of the form
M∑
k=1

e−akR
I1∑
i=I0

PikR
i −

N1∑
n=N0

fn(ζR)
Cn
Rn

, (7)

where fn(x)=1 − e−x(1 + x + · · · + xn/n!) is the Tang-Toennies [33] damping function,

ak, Pik, and ζ are adjustable parameters, and the summation limits [M, I0, I1, N0, N1] are
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[3,-1,2,6,16] for VBO(R), [3,0,2,6,10] for Vad(R), [3,0,2,4,8] for Vrel(R), and [2,0,2,3,6] for

VQED(R). The asymptotic constants C8 for Vrel(R) and C6 for VQED(R) are not known

and were also adjusted. The remaining constants Cn were fixed and set equal to the known

literature values [5, 29, 34, 35]. To impose the correct behavior of VBO(R) at R=0 we used the

theoretical value of the beryllium atom energy EBe=−14.667356498 hartree [36]. We used

the inverse squares of uncertainties σ(R) as the weighting factors in the least-squares fitting.

The maximum and average absolute errors of the fit are 0.92σ and 0.16σ, respectively, for

the BO component. Similarly accurate fits were obtained for the remaining components of

V (R).

In order to estimate the uncertainties of physical quantities calculated with our potential,

we developed functions σX(R) representing the uncertainties of the calculated components

such that their exact values can be assumed to be contained between functions VX(R) ±

σX(R), where VX(R) is the analytic fit of a component X. We found that the functions

σX(R) can be represented as σX(R) = s0e
−a0R+

∑n
i=1 sie

−aiR2
where n=3, except for Vrel(R)

when n=4. The parameters and the Fortran codes for all fits can be found in the SI [27].

To compute the properties of the bound state of 4He2, we used the nonadiabatic pertur-

bation theory [16] applied successfully to the H2 molecule and its isotopologues [37–41]. In

this theory, the energies E and radial wave functions χ(R) are obtained by solving the radial

equation of the form[
− h̄

2

R2

∂

∂R

R2

2µ‖(R)

∂

∂R
+
J(J + 1)h̄2

2µ⊥(R)R2
+Y(R)−E

]
χ(R)=0, (8)

where µ‖(R) and µ⊥(R) are the R-dependent vibrational and rotational reduced masses

1

2µ‖(R)
=

1

mn

+W‖(R),
1

2µ⊥(R)
=

1

mn

+W⊥(R), (9)

and Y(R) is the sum of V (R), Vret(R), and a nonadiabatic correction Vna(R). The ex-

pressions for the functions W‖(R), W⊥(R), and Vna(R) are given in Ref. [37]. One can

show that 2µ‖(∞)=2µ⊥(∞)=mn + 2me + 4m2
e/mn + O (m3

e/m
2
n), where me is the electron

mass. We employed the known R→∞ limits and computed directly the R-dependent parts

W int
‖ (R)≡W‖(R)−W‖(∞) and W int

⊥ (R)≡W⊥(R)−W⊥(∞) of W‖(R) and W⊥(R).

The values of the functions W int
‖ (R), W int

⊥ (R), and V int
na (R)≡Vna(R)−Vna(∞) were calcu-

lated at 52 points in the range 1≤R≤18 bohr using a dedicated FCI code and the same

dXZcp orbital basis sets as used to calculate the adiabatic correction, see Ref. [28] for the
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description of the computational algorithm. We employed basis sets with cardinal numbers

up to X=6 for W int
‖ (R) and W int

⊥ (R) and up to X=5 for V int
na (R). The recommended values

ofW int
‖ (R),W int

⊥ (R), and V int
na (R) were obtained by extrapolations from the results computed

with two largest basis sets assuming the X−3 convergence. The analytic representations of

these functions were obtained by fitting the recommended values with functions of the form

of Eq. (7) with summation limits [M, I0, I1, N0, N1] equal to [2,0,3,8,8] forW int
‖ (R), [2,0,2,8,8]

forW int
⊥ (R), and [3,0,2,6,8] for V int

na (R). We estimate that in the well region the obtained fits

represent the exact values with errors smaller than 5%. Equation (8) was solved numerically

using the Mathematica software [42].

The computed dissociation energy D0 and the size 〈R〉 of the (J=0) bound state

are presented in Table II, while the plots of the excess masses ∆m‖(R)=2µ‖(R) − mn,

∆m⊥(R)=2µ⊥(R)−mn, and of V int
na (R) are shown in Fig. 1. Our results confirm earlier ob-

servation [15] that the adiabatic and relativistic corrections to D0 and 〈R〉 are significant, but

the effect of retardation is very small when the leading relativistic and QED contributions

are included in V (R). The nonadiabatic effect increases D0 by 2.6 neV and decreases 〈R〉

by 0.42 Å, i.e., by the same amount as does the QED correction. It is interesting to observe

that these changes are recovered with excellent accuracy by the adiabatic calculations with

atomic masses. We found that the difference between the nonadiabatic values of D0 and 〈R〉

and the adiabatic ones computed with atomic masses are only −0.0007 neV and 0.00011 Å,

respectively. These differences are negligible due to the small values ∆m‖(R)− 2me in the

well region (R>5 bohr), as shown in Fig. 1, but can be expected to be larger for helium

properties sensitive to the potential at smaller values of R. Our results resolve the long-

standing controversy [43–45] which masses should be used in calculations for weakly bound

dimers.

The recommended values of D0=138.9(5) neV and 〈R〉=47.13(8) Å agree with the former

best theoretical determinations [15], but have six times smaller uncertainties. The small

disagreement with the best measured value of 〈R〉 [13] remains essentially unchanged, but our

uncertainty becomes now two orders, rather than one order, smaller than the experimental

one. Our value of D0 differs by 1.8 σ and 1.2 σ, respectively, from the values 1.1+0.3
−0.2 mK

≈ 95+25
−15 neV [13] and 112+22

−16 neV [5, 46] derived from a nanosieve transmission experiment

[13]. The valueD0=151.9±13.3 neV, obtained very recently [14] using the Coulomb explosion

technique, agrees with our theoretical prediction within 0.98 σ.
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TABLE II. Dissociation energy D0 (in neV) and the average separation 〈R〉 (in Å) for 4He2.

V = VBO + Vad + Vrel + VQED.

D0 〈R〉

potential nuclear atomic nuclear atomic

VBO 145.2(5) 147.8(5) 46.20(7) 45.80(7)

VBO+Vad 153.5(5) 156.3(5) 45.03(7) 44.65(7)

VBO+Vad+Vrel 134.1(5) 136.7(5) 47.90(8) 47.48(8)

V 136.7(5) 139.3(5) 47.48(8) 47.07(8)

V +Vret 136.3(5) 138.9(5) 47.55(8) 47.13(8)

V +Vret+nonad 138.9(5) 47.13(8)

V +Vret, Ref. [15] 139.2(29) 47.09(46)

Exptl 151.9± 13.3a 52± 4b

a Ref. [14]
b Ref. [13]

The interaction energies presented in this paper establish a new accuracy benchmark for

the helium dimer. This improvement was achieved using the ECG approach to solve the

four-electron Schrödinger equation in the BO approximation and by computing the post-BO

corrections using improved methodology and significantly larger basis sets. We also com-

puted, for the first time, the effective R-dependent vibrational and rotational masses and the

resulting nonadiabatic corrections to the properties of the 4He2 bound state. These calcula-

tions demonstrated that atomic masses should be used in adiabatic calculations for weakly

bound systems. The predicted dissociation energy is in agreement with the experimental

determination via Coulomb explosion method, confirming the reliability of this technique.

In a separate publication, we will report applications of the computed potential and effective

masses to calculate properties of bulk helium of relevance to metrology.

This work was supported by the NSF grant CHE-1566036 and the NCN grant 2014/15/B/ST4/04929.
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FIG. 1. The R-dependence of the excess masses and the nonadiabatic correction to the potential.

11



∗ mitek@tiger.chem.uw.edu.pl

[1] J. Fischer and J. Ulrich, Nature Phys. 12, 4 (2016).

[2] M. R. Moldover, W. L. Tew, and H. W. Yoon, Nature Phys. 12, 7 (2016).

[3] J. W. Schmidt, R. M. Gavioso, E. F. May, and M. R. Moldover, Phys. Rev. Lett. 98, 254504

(2007).

[4] P. F. Egan, J. A. Stone, J. H. Hendricks, J. E. Ricker, G. E. Scace, and G. F. Strouse, Opt.

Lett. 40, 3945 (2015).

[5] W. Cencek, M. Przybytek, J. Komasa, J. B. Mehl, B. Jeziorski, and K. Szalewicz, J. Chem.

Phys. 136, 224303 (2012).

[6] K. Piszczatowski, M. Puchalski, J. Komasa, B. Jeziorski, and K. Szalewicz, Phys. Rev. Lett.

114, 173004 (2015).

[7] R. M. Gavioso, D. M. Ripa, P. P. M. Steur, C. Gaiser, T. Zandt, B. Fellmuth, M. de Podesta,

R. Underwood, G. Sutton, L. Pitre, F. Sparasci, L. Risegari, L. Gianfrani, A. Castrillo, and

G. Machin, Phil. Trans. Roy. Soc. A 374, 20150046 (2016).

[8] K. Riisager, Rev. Mod. Phys. 66, 1105 (1994).

[9] F. Luo, G. C. McBane, G. Kim, C. F. Giese, and W. R. Gentry, J. Chem. Phys. 98, 3564

(1993).

[10] F. Luo, C. F. Giese, and W. R. Gentry, J. Chem. Phys. 104, 1151 (1996).

[11] W. Schollkopf and J. P. Toennies, Science 266, 1345 (1994).

[12] W. Schollkopf and J. P. Toennies, J. Chem. Phys. 104, 1155 (1996).

[13] R. E. Grisenti, W. Schollkopf, J. P. Toennies, G. C. Hegerfeldt, T. Kohler, and M. Stoll,

Phys. Rev. Lett. 85, 2284 (2000).

[14] S. Zeller, M. Kunitski, J. Voigtsberger, A. Kalinin, A. Schottelius, C. Schober, M. Waitz,

H. Sann, A. Hartung, T. Bauer, M. Pitzer, F. Trinter, C. Goihl, C. Janke, M. Richter, G. Ka-

stirke, M. W. A. Czasch, M. Kitzler, M. Braune, R. E. Grisenti, W. Schollkopf, L. P. H.

Schmidt, M. Schoffler, J. B. Williams, T. Jahnke, and R. Dorner, Proc. Nat. Acad. Sci. 113,

14651 (2016).

[15] M. Przybytek, W. Cencek, J. Komasa, G.  Lach, B. Jeziorski, and K. Szalewicz, Phys. Rev.

Lett. 104, 183003 (2010), erratum: 108, 129902 (2012).

12



[16] K. Pachucki and J. Komasa, J. Chem. Phys. 129, 034102 (2008).

[17] M. Jeziorska, W. Cencek, K. Patkowski, B. Jeziorski, and K. Szalewicz, J. Chem. Phys. 127,

124303 (2007).

[18] W. Cencek, K. Patkowski, M. Przybytek, B. Jeziorski, and K. Szalewicz, “Orbital products

versus explicitly correlated wave-function expansions in accurate calculations of interaction

energies,” (2017), to be published.

[19] W. Cencek and J. Rychlewski, J. Chem. Phys. 98, 1252 (1993).

[20] J. Komasa and J. Rychlewski, Chem. Phys. Lett. 249, 253 (1996).

[21] W. Cencek, J. Komasa, K. Pachucki, and K. Szalewicz, Phys. Rev. Lett. 95, 233004 (2005).

[22] W. Cencek and K. Szalewicz, Int. J. Quantum Chem. 108, 2192 (2008).

[23] K. Patkowski, W. Cencek, P. Jankowski, K. Szalewicz, J. B. Mehl, G. Garberoglio, and A. H.

Harvey, J. Chem. Phys. 129, 094304 (2008).

[24] M. Przybytek, B. Jeziorski, W. Cencek, J. Komasa, J. B. Mehl, and K. Szalewicz, Phys. Rev.

Lett. 108, 183201 (2012).

[25] H. Nakashima and H. Nakatsuji, J. Chem. Phys. 128, 154107 (2008).

[26] W. Cencek and W. Kutzelnigg, Chem. Phys. Lett. 266, 383 (1997).

[27] See supplementary material at for the composition of the orbital basis, the results of

orbital calculations, and for the Fortran 90 code to compute the fitted potentials.

[28] M. Przybytek, “Full configuration interaction approach to nonadiabatic effects in rovibration

spectra of diatomic molecules,” (2017), to be published.

[29] M. Przybytek and B. Jeziorski, Chem. Phys. 401, 170 (2012).

[30] “Dalton, a molecular electronic structure program, release 2.0,” (2005), see http://

daltonprogram.org.

[31] S. Coriani, T. Helgaker, P. Jorgensen, and W. Klopper, J. Chem. Phys. 121, 6591 (2004).

[32] “Dalton, a molecular electronic structure program, release 2013.2,” (2013), see http://

daltonprogram.org.

[33] K. T. Tang and J. P. Toennies, J. Chem. Phys. 80, 3726 (1984).

[34] M. Przybytek and B. Jeziorski, Chem. Phys. Lett. 459, 183 (2008), erratum: 463, 435 (2008).

[35] L. Y. Tang, Z. C. Yan, T. Y. Shi, and J. Mitroy, Phys. Rev. A 84, 052502 (2011).

[36] M. Puchalski, J. Komasa, and K. Pachucki, Phys. Rev. A 87, 030502(R) (2013).

[37] K. Pachucki and J. Komasa, J. Chem. Phys. 130, 164113 (2009).

13



[38] K. Pachucki and J. Komasa, Phys. Chem. Chem. Phys. 12, 9188 (2010).

[39] J. Komasa, K. Piszczatowski, G. Lach, M. Przybytek, B. Jeziorski, and K. Pachucki, J. Chem.

Theory Comput. 7, 3105 (2011).

[40] K. Pachucki and J. Komasa, Phys. Rev. A 83, 042510 (2011).

[41] K. Pachucki and J. Komasa, J. Chem. Phys. 143, 034111 (2015).

[42] Wolfram Research, Inc., Mathematica, Version 7.0, Champaign, IL (2008).

[43] A. R. Janzen and R. A. Aziz, J. Chem. Phys. 107, 914 (1997).

[44] M. J. Jamieson and A. Dalgarno, J. Phys. B 31, L219 (1998).

[45] M. J. Jamieson, A. Dalgarno, B. Zygelman, P. S. Krstic, and D. R. Schultz, Phys. Rev. A

61, 014701 (1999).
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