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We use the subleading soft-graviton theorem to construct an operator Tzz whose insertion in
the four-dimensional tree-level quantum gravity S-matrix obeys the Virasoro-Ward identities of the
energy momentum tensor of a two-dimensional conformal field theory (CFT2). The celestial sphere
at Minkowskian null infinity plays the role of the Euclidean sphere of the CFT2, with the Lorentz
group acting as the unbroken SL(2,C) subgroup.

INTRODUCTION

Any quantum scattering amplitude of massless parti-
cles in four-dimensional (4D) asymptotically Minkowskian
spacetime can be rewritten as a correlation function on the
celestial sphere at null infinity. Asymptotic one-particle
states are represented as operator insertions on the sphere
at the points where they exit or enter the spacetime. The
energy and other flavor or quantum numbers then label
distinct operators. The SL(2,C) Lorentz invariance acts
as the global conformal group on the celestial sphere and
implies that these correlators lie in SL(2,C) representa-
tions.

In this paper we consider the S-matrix for 4D quan-
tum gravity in asymptotically Minkowskian spacetime. We
construct an explicit soft-graviton mode, denoted Tzz, and
prove that its insertions in the tree-level S-matrix (with no
other external soft insertions) obey all the Virasoro-Ward
identities of a stress tensor insertion in a CFT2 correlator on
the sphere. Our main tool is the subleading soft-graviton
theorem [1–4]. Our construction refines and extends re-
sults and conjectures of [5–10]. It demonstrates that such
quantum gravity scattering amplitudes are in Virasoro rep-
resentations, as are CFT2 correlators. This extends from
gauge theory to gravity earlier work [11, 12] in which soft-
photon and gluon insertions were shown to obey the Ward
identities of a Kac-Moody algebra on the celestial sphere.

The current work has several limitations. We do not
consider massive particles, but do expect the extension to
the massive case to be possible along the lines of [13–15].
Qualitatively important issues arise - including a possible
central term - when there are multiple soft insertions that
are not addressed here. At the one-loop level, corrections
to the Ward identity are expected as a consequence of cor-
rections to the soft theorem [16–18]. We have not analyzed
their implications. Finally, although our results imply that
certain quantum gravity scattering amplitudes are in Vi-
rasoro representations, there is no reason to expect that
they are the same kinds of unitary representations appear-
ing in conventional 2D CFTs. We leave the nature of these
representations to future work.

SOFT-GRAVITON LIMITS

In this paper we consider tree-level scattering amplitudes
of massless particles in four dimensions. The single particle
states are labeled by | p, s 〉, where p and s denote the four-
momentum and helicity of the particle respectively. The
particles may carry charges or flavors but these indices are
not relevant and are suppressed. The normalization of these
states is given by

〈 p, s | p′, s′ 〉 = (2π)3(2p0)δs,s′δ
3
(

~p− ~p ′
)

. (1)

The tree-level scattering amplitude involving n massless
states is denoted by

An = 〈 out |S| in 〉 , (2)

where we use the shorthand

| in 〉 = | p1, s1 ; . . . ; pm, sm 〉 , (3)

〈 out | = 〈 pm+1, sm+1 ; . . . ; pn, sn | (4)

and suppress the dependence ofAn on the momenta pk. We
use a convention in which incoming states are described as
CPT conjugate outgoing states with negative p0 so that
momentum conservation implies

∑n

k=1 p
µ
k = 0.

Let A(±)
n+1(q) be an amplitude involving a graviton of mo-

mentum qµ and polarization ε
(±)
µν (q) as well as n other mass-

less asymptotic states

A(±)
n+1(q) = 〈 out ; q,±2 |S| in 〉 . (5)

The soft q0 → 0 limit of this amplitude is governed by the
leading [19] and sub-leading [1–4] soft-graviton theorems1

A(±)
n+1(q) →

[

S
(±)
0 + S

(±)
1 +O(q)

]

An , (6)

where An is the original amplitude without the soft-
graviton (2) and

S
(±)
0 =

κ

2

n
∑

k=1

p
µ
kp

ν
kε

(±)
µν (q)

pk · q
,

S
(±)
1 = − iκ

2

n
∑

k=1

ε
(±)
µν (q)pµkqλ
pk · q

J λν
k , κ =

√
32πG .

(7)

1 As shown in [4, 20, 21], tree-level graviton amplitudes are also con-
strained by a sub-subleading soft-graviton theorem.



Here Jkµν is the angular momentum operator acting on the
kth outgoing state. It is the sum of the orbital angular mo-
mentum operator Lkµν and spin angular momentum Skµν .
Explicitly (see [22]),

Lkµν = −i

[

pkµ
∂

∂pνk
− pkν

∂

∂p
µ
k

]

,

Skµν = −isk

[

ε(+)
µ (pk)ε

(−)
ν (pk)− ε(+)

ν (pk)ε
(−)
µ (pk)

]

+ skε
(+)
ρ (pk)Lkµνε

(−)ρ(pk) .

(8)

ε
(±)
µ (p) are polarization vectors that satisfy2

ε(±)(p) · p = 0 , ε(±)(p) · ε(±)(p) = 0 , (9)

ε(±)(p) · ε̄ (±)(p) = 1 . (10)

Equation (8) continues to hold for particles of half-integer
helicity provided that the little group phase of the wave-
function is chosen consistently. Gauge invariance of the
leading and subleading soft limits implies momentum and
angular momentum conservation respectively,

n
∑

k=1

p
µ
kAn =

n
∑

k=1

JkµνAn = 0 . (11)

Null momenta are characterized by an energy and a direc-
tion (equivalently, a point on S2). To write out the soft
factors explicitly, we parameterize the massless particles’
momenta and polarization vectors using stereographic co-
ordinates on the sphere3

p
µ
k = ωk

(

1,
zk + z̄k

1 + zkz̄k
,
−i(zk − z̄k)

1 + zkz̄k
,
1− zkz̄k

1 + zkz̄k

)

,

ε(+)
µ (pk) =

1√
2
(−z̄k, 1,−i,−z̄k) ,

ε(−)
µ (pk) =

1√
2
(−zk, 1, i,−zk) , k = 1, · · · , n . (12)

For the soft graviton, we write

qµ = ω

(

1,
z + z̄

1 + zz̄
,
−i(z − z̄)

1 + zz̄
,
1− zz̄

1 + zz̄

)

,

ε(+)
µ (q) =

1√
2
(−z̄, 1,−i,−z̄) ,

ε(−)
µ (q) =

1√
2
(−z, 1, i,−z) . (13)

2 Note that (9) is invariant under ε
(±)
µ (q) → eiθ±(q)ε

(±)
µ (q), i.e. (9)

only determines the polarizations up to an overall momentum de-
pendent phase. These correspond to the little group transforma-
tions.

3 In writing the explicit forms of the polarization vectors in (12), (13)
we have specified our choice of little group phase.

The graviton polarization is ε
(±)
µν (q) = ε

(±)
µ (q)ε

(±)
ν (q). In

this parameterization, the soft factors (7) are given by

S
(+)
1 =

κ

2

n
∑

k=1

(z̄ − z̄k)
2

z − zk

[

2h̄k

z̄ − z̄k
− Γz̄k

z̄kz̄k
h̄k − ∂z̄k + |sk|Ωz̄k

]

,

S
(−)
1 =

κ

2

n
∑

k=1

(z − zk)
2

z̄ − z̄k

[

2hk

z − zk
− Γzk

zkzk
hk − ∂zk + |sk|Ωzk

]

.

(14)

Here Γz
zz is the connection with respect to the unit round

metric γzz̄ = 2(1 + zz̄)−2 on the sphere, Ωz = 1
2Γ

z
zz is the

spin connection4, and we have defined the operators5

hk ≡ 1

2
(sk − ωk∂ωk

) , h̄k ≡ 1

2
(−sk − ωk∂ωk

) . (15)

In this parameterization, equation (11) takes the form

(

n
∑

k=1

ωk

)

An =

(

n
∑

k=1

ωk

zk + z̄k

1 + zkz̄k

)

An = 0 ,

− i

(

n
∑

k=1

ωk

zk − z̄k

1 + zkz̄k

)

An =

(

n
∑

k=1

ωk

1− zkz̄k

1 + zkz̄k

)

An = 0 ,

− i

n
∑

k=1

[

Y zk
(

∂zk − |sk|Ωzk

)

+ Y z̄k
(

∂z̄k − |sk|Ωz̄k

)

+ DzkY
zkhk +Dz̄kY

z̄k h̄k

]

An = 0 , (16)

where Y z(z) = a + bz + cz2 is a global conformal Killing
vector andDz is the covariant derivative on the unit sphere.

MODE EXPANSIONS NEAR I
+

Four-dimensional asymptotically flat metrics [7–9, 23–25]
admit an expansion near I+of the form

ds2 = −du2 − 2dudr + 2r2γzz̄dzdz̄

+
2mB

r
du2 + rCzzdz

2 + rCz̄z̄dz̄
2

+DzCzzdudz +Dz̄Cz̄z̄dudz̄ + · · · .

(17)

In these coordinates I+ is the null surface (u, r = ∞, z, z̄).
The retarded time u parameterizes the null generators of
I+ and (z, z̄) are stereographic coordinates on the confor-
mal S2. The boundaries of I+ are located at (u = ±∞, r =

4 The zweibein chosen here is
(

e+, e−
)

=
√
2γzz̄

(

dz,dz̄
)

for which

Ω±
± = ± 1

2

(

Γz
zzdz − Γz̄

z̄z̄dz̄
)

. This choice is related to the little
group phase chosen in (12), (13).

5 Single particle momentum eigenstates do not diagonalize the dila-
tion operator hk + h̄k. At tree-level, amplitudes are rational func-
tions of the external momenta and we can formally define Mellin-
transformed primary operators Õ(m, z, z̄) =

∫∞
0 dωωm−1O(ω, z, z̄)

with conformal weights h = 1
2
(s+m), h̄ = 1

2
(−s+m).
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∞, z, z̄) and are denoted I+
+ and I+

− respectively. The
Bondi mass aspect mB and Czz depend only on (u, z, z̄)
and not on r. The news tensor is defined by

Nzz ≡ ∂uCzz . (18)

When expanding near flat spacetime, the Bondi coordinates
are related to flat Cartesian coordinates by

x0 = u+ r , xi = rx̂i(z, z̄) ,

x̂i(z, z̄) =
1

1 + zz̄
(z + z̄,−i(z − z̄), 1− zz̄) . (19)

The space of asymptotically flat metrics in Bondi gauge
with prescribed falloffs [23, 24] admits an infinite-
dimensional asymptotic symmetry group, the BMS group,
parameterized by vector fields of the form

ξ = (1 +
u

2r
)Y z∂z −

u

2r
Dz̄DzY

z∂z̄

−1

2
(u+ r)DzY

z∂r +
u

2
DzY

z∂u + c.c.

+f∂u − 1

r
(Dzf∂z +Dz̄f∂z̄) +DzDzf∂r + · · · .

(20)

Here f(z, z̄) is a free function on the sphere associated to
the supertranslation subgroup of the BMS group. The two-
dimensional vector field Y (z, z̄) is a conformal Killing vec-
tor (CKV) which realizes the action of the Lorentz group
SL(2,C) on the asymptotic sphere. For a more general
CKV, obeying ∂z̄Y

z = 0 except at isolated singularities,
the Bondi gauge condition is preserved but the falloffs im-
posed on the metric are violated at the singularities. It
was conjectured [5–9] and proven in tree-level perturbation
theory [10] that such symmetries nevertheless play an im-
portant role.
The flat space outgoing graviton mode expansion is6

hout
µν

(

x0, ~x
)

=
∑

α=±

∫

d3q

(2π)3
1

2ωq

×
[

ε̄(α)µν (q)a
out
α (~q )eiq·x + ε(α)µν (q)a

out
α (~q )†e−iq·x

]

, (21)

where ωq = |~q | and
[

aoutα (~p ), aoutβ (~q )†
]

= (2π)
3 (

2p0
)

δαβδ
3 (~p− ~q ) . (22)

Outgoing gravitons with momentum q and polarization α

as in the amplitude (2) correspond to final-state insertions
of aoutα (~q ).
In retarded Bondi coordinates

Cz̄z̄(u, z, z̄) = κ lim
r→∞

1

r
∂z̄x

µ∂z̄x
νhout

µν

(

u+ r, rx̂(z, z̄)
)

.

(23)

6 Here, we take gµν = ηµν +κhµν which implies a canonical normal-
ization for the graviton field, L ∼ 1

2
(∂h)2.

This large r limit can be computed using the stationary
phase approximation [10, 26] and one finds

Cz̄z̄(u, z, z̄)

= − iκ

8π2
ε̂z̄z̄

∫ ∞

0

dωq

[

aout−

(

ωqx̂
)

e−iωqu −aout+ (ωqx̂
)†
eiωqu

]

.

(24)

Here x̂ ≡ x̂(z, z̄) and

ε̂z̄z̄ =
1

r2
∂z̄x

µ∂z̄x
νε(+)

µν (ωqx̂) =
2

(1 + zz̄)2
. (25)

We define the first moment of the Bondi news

N
(1)
z̄z̄ ≡

∫

duuNz̄z̄ = − i

2
lim
ω→0

∂ω

∫

du
(

eiωu − e−iωu
)

Nz̄z̄

=
iκ

8π
ε̂z̄z̄ lim

ω→0
(1 + ω∂ω)

[

aout−

(

ωx̂
)

− aout+

(

ωx̂
)†]

,

(26)

along with a similar definition for N
(1)
zz . We note that N

(1)
z̄z̄

has the Weinberg pole projected out by the factor 1+ω∂ω.
Hence it has nonzero finite scattering amplitudes.
The insertion of the zero mode (26) is then given by (6)

and (14) with

〈 out |N (1)
z̄z̄ S| in 〉 = 4Gi

(1 + zz̄)2

n
∑

k=1

(z − zk)
2

z̄ − z̄k

×
[

2hk

z − zk
− Γzk

zkzk
hk − ∂zk + |sk|Ωzk

]

〈 out |S| in 〉 .
(27)

A 2D STRESS TENSOR

Massless scattering amplitudes An of any four-
dimensional theory may always be recast as two-
dimensional correlation functions of local operators on the
asymptotic S2 at null infinity [12],

An = 〈O1(ω1, z1, z̄1) · · · On(ωn, zn, z̄n) 〉 . (28)

The operator Ok creates a massless single-particle state
with momentum and polarization given by (12). The parti-
cle intersects the asymptotic S2 at the point (zk, z̄k)

7. The
four-dimensional Lorentz group SL(2,C) acts as the global
conformal group on the asymptotic S2 according to8

z → z′ =
az + b

cz + d
, ad− bc = 1 . (29)

7 The same is not true for scattering amplitudes involving massive
particles since a massive four-momentum does not localize to a
point on I. However following [13–15] we expect the analysis of this
paper to have a suitable generalization to the massive case, as the
subleading soft theorem [1–4] remains valid for massive particles.

8 This also acts on the energy as

ω̃ → ω̃|cz + d|2 , ω̃ =
ω

1 + zz̄
.

3



This implies that all Minkowskian QFT4 amplitudes are in
representations of the same global conformal group as Eu-
clidean CFT2 correlators. In this section we will see that
(hard) quantum gravity amplitudes are in representations
of the full CFT2 Virasoro group. Indeed it has already been
shown that the leading soft-photon and graviton theorems
are the Ward identities of abelian Kac-Moody current al-
gebras acting on the asymptotic S2 [11, 26–28]. A similar
Kac-Moody structure for non-abelian gauge theory scatter-
ing amplitudes was studied in [29]. The leading soft-gluon
theorem in a non-abelian gauge theory with gauge group G
was shown in [12] to be equivalent to the Ward identity of
a G Kac-Moody current algebra. In all of these cases, holo-
morphic Kac-Moody current insertions were related to pos-
itive helicity soft insertions. For instance, the soft-photon
Kac-Moody current is

Jz = −8π

e2
F (0)
uz =

1

e
ε̂z lim

ω→0

[

ωaout+

(

ωx̂
)

+ ωaout−

(

ωx̂
)†]

,

(30)

where F
(0)
uz is the zero mode of the photon field strength,

ε̂z =
√
ε̂zz, and aout+

(

ωx̂
)

creates outgoing positive helicity

photons. Insertions of this current take the form

〈JzO1 · · · On 〉 =
∑

k

Qk

z − zk
〈O1 · · · On 〉 , (31)

where eQk is the electric charge of the operator Ok and
we have dropped the dependence of the operators on
(ωk, zk, z̄k) for compactness.
In a similar vein, it has been shown [10, 30] that the sub-

leading soft-graviton theorem is the Ward identity for the
superrotations [9] which generate an infinite-dimensional
Virasoro subgroup of the extended BMS group9. In the
language of 2D correlators, the current corresponding to
these local conformal transformations is the stress tensor.
We now turn to an explicit construction of this operator.
Our starting point is (27) which has a form reminiscent

of a stress tensor Ward identity. To bring this into the
usual form, we define

Tzz ≡ i

8πG

∫

d2w
1

z − w
D2

wD
w̄N

(1)
w̄w̄ . (32)

This integro-differential operator relating Tzz to N
(1)
w̄w̄ can

be applied to the matrix element (27) in order to determine
the matrix elements of Tzz. One finds

〈TzzO1 · · ·On 〉 =
n
∑

k=1

[

hk

(z − zk)2
+

Γzk
zkzk

z − zk
hk +

1

z − zk
(∂zk − |sk|Ωzk)

]

〈O1 · · ·On 〉 , (33)

which is the precise form of the stress tensor correlator in a
conformal field theory on a curved background. This can be
brought to the more familiar form by dressing the operators
with appropriate factors of the zweibein (see [33] for a more
detailed discussion).
Define the charge

TC [Y ] =

∮

C

dz

2πi
Y zTzz , (34)

where Y z is a local CKV obeying ∂z̄Y
z = 0 with no sin-

gularities inside the contour. Geometrically, these vec-
tor fields generate the local conformal transformations of
the sphere. Therefore one expects the operators (34) to
implement the action of the Virasoro algebra quantum-
mechanically. Indeed, insertions of (34) take the form

〈TC [Y ]O1 · · ·On 〉
=
∑

k∈C

[DzkY
zkhk + Y zk (∂zk − |sk|Ωzk)] 〈O1 · · · On 〉 .

(35)

9 The sub-subleading soft-graviton theorem has also been recently
recast as a symmetry of the S-matrix (see [31, 32]).

Thus, TC [Y ] generates a local conformal transformation on
all operators inside C10.
Now, consider a contour C that encircles all zk and a Y z

that is globally defined on the sphere, i.e. Y z = a+bz+cz2.
Since we are on a compact S2, insertions of TC [Y ] can be
computed by either closing the contour towards z = zk or
away from it. No poles are crossed when the contour is
closed away from z = zk and these insertions must vanish.
In other words,

n
∑

k=1

[DzkY
zkhk + Y zk (∂zk − |sk|Ωzk)] 〈O1 · · · On 〉 = 0 ,

Y z = a+ bz + cz2 , (36)

which is the statement of boost/angular momentum con-
servation (16). In ordinary two dimensional conformal field

10 This operator is closely related to the soft part of the superrota-
tion charge defined in [10]. More precisely if C is a contour that
surrounds all zk, then

Q+
S

= − i

2
TC [Y ] .

4



theories, the existence of the full Virasoro symmetry serves
as a drastic constraint on allowed dynamics and is respon-
sible for most of the simplifications in 2D CFT’s relative to
higher dimensional theories. One hopes that the identifica-
tion of this symmetry of the four dimensional gravitational
S-matrix can be exploited to similar effect.
The stress tensor (32) is non-local on S2 in the news

tensor zero mode N
(1)
z̄z̄ . Nevertheless, we have proven that

insertions of Tzz are local on the S2. In contrast, the con-
struction of the boundary stress tensor in AdS/CFT [34, 35]
is local in the bulk fields when written in terms of sublead-
ing terms in the metric expansion. Leading and subleading
terms in the metric expansion have a gauge-dependent and
generally non-local relation on the S2 enforced by the Ein-
stein equation. We have tried but failed to find, by rewrit-

ing N
(1)
z̄z̄ in terms of subleading metric components, such

a local expression in Bondi gauge11. However it is possi-
ble that such a manifestly local expression exists in some
other gauge. On the other hand, the non-locality may indi-
cate that the Virasoro action in 4D quantum gravity has a
different character than that in conventional 2D CFT. We
leave this question unanswered for now.
Obviously an anti-holomorphic stress tensor Tz̄z̄ could

be similarly constructed. However, a number of yet unre-
solved issues arise for multiple soft-current insertions, even
in the Maxwell case, as discussed in [11, 12]. The result
of this paper is that insertions of a single Tzz generate lo-
cal conformal transformations when all other insertions are
hard.
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