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A central question in quantum computation is to identify the resources that are responsible for quantum speed-
up. Quantum contextuality has been recently shown to be a resource for quantum computation with magic states
for odd-prime dimensional qudits and two-dimensional systems with real wavefunctions. The phenomenon of
state-independent contextuality poses a priori an obstruction to characterizing the case of regular qubits, the
fundamental building block of quantum computation. Here, we establish contextuality of magic states as a
necessary resource for a large class of quantum computation schemes on qubits. We illustrate our result with a
concrete scheme related to measurement-based quantum computation.

PACS numbers: 03.67.Mn, 03.65.Ud, 03.67.Ac

The model of quantum computation by state injection
(QCSI) [1] is a leading paradigm of fault-tolerance quantum
computation. Therein, quantum gates are restricted to belong
to a small set of classically simulable gates, called Clifford
gates [2], that admit simple fault-tolerant implementations [3].
Universal quantum computation is achieved via injection of
magic states [1], which are the source of quantum computa-
tional power of the model.

A central question in QCSI is to characterize the physical
properties that magic states need to exhibit in order to serve as
universal resources. In this regard, quantum contextuality has
recently been established as a necessary resource for QCSI.
This was first achieved for quopit systems [4, 5], where the
local Hilbert space dimension is an odd prime power, and sub-
sequently for local dimension two with the case of rebits [6].
In the latter, the density matrix is constrained to be real at all
times.

In this work we ask “Can contextuality be established as
a computational resource for QCSI on qubits?”. This is not
a straightforward extension of the quopit case because the
multi-qubit setting is complicated by the presence of state-
independent contextuality among Pauli observables [7, 8].
Consequently, every quantum state of n ≥ 2 qubits is con-
textual w.r.t. Pauli measurements, including the completely
mixed one [5]. It is thus clear that contextuality of magic
states alone cannot be a computational resource for every
QCSI scheme on qubits.

Yet, there exist qubit QCSI schemes for which contextuality
of magic states is a resource, and we identify them in this
work. Specifically, we consider qubit QCSI schemesMO that
satisfy the following two constraints:

(C1) Resource character. There exists a quantum state that
does not exhibit contextuality with respect to measure-
ments available inMO.

(C2) Tomographic completeness. For any state ρ, the expec-
tation value of any Pauli observable can be inferred via
the allowed operations of the scheme.

The motivation for these constraints is the following.
Condition (C1) constitutes a minimal principle that unifies,

simplifies and extends the quopit [5] and rebit [6] settings.
While seemingly a weak constraint, it excludes the possibility
of Mermin-type state-independent contextuality [7, 8] among
the available measurements (see Lemma 1 below). A pri-
ori, the absence of state-independent contextuality comes at
a price. Namely, for any QCSI schemeMO on n ≥ 2 qubits,
not all n-qubit Pauli observables can be measured. Thus, the
question arises of whether this limits access to all n qubits for
measurement. As we show in this work, this doesnt have to
be the case.

Addressing this question, we impose tomographic com-
pleteness as our technical condition for a true n-qubit QCSI
scheme, cf. (C2). It means that any quantum state can be
fully measured given sufficiently many copies. The rebit
scheme [6], for example, does not satisfy this.

One of our results is that for any number n of qubits there
exists a QCSI scheme which satisfies both conditions (C1) and
(C2). The reason why both conditions can simultaneously
hold lies in a fundamental distinction between observables
that can be measured directly in a given qubit QCSI scheme
from those that can only be inferred by measurement of other
observables. The resulting qubit QCSI schemes resemble their
quopit counterparts [4, 5] in the absence of state-independent
contextuality, yet have full tomographic power for the multi-
qubit setting.

The main result of this work is Theorem 1. It says that if
the initial (magic) states of a qubit QCSI scheme are describ-
able by a non-contextual hidden variable model (NCHVM) it
becomes fundamentally impossible to implement a universal
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set of gates. We highlight that Theorem 1 applies generally to
any scheme fulfilling the condition (C1), including that of [6].

The condition (C1) plays a pivotal role in our analysis. It is
clear that contextuality of the magic states can be a resource
only if condition (C1) holds. In this work we establish the
converse, namely that contextuality of the magic states is a
resource for QCSI if condition (C1) holds. Therefore, condi-
tion (C1) is the structural element that unifies the previously
discussed quopit [5] and rebit [6] case, and the qubit scenarios
discussed here. Together, condition (C1) and Theorem 1 char-
acterize the contextuality types that are needed in quantum
computation via state injection, showing that state-dependent
contextuality with respect to Pauli observables is a universal-
ity resource.

As a final remark, we note that the measurements available
in QCSI schemes satisfying (C1) preserve positivity of suit-
able Wigner functions [9].

Setting. An n-qubit Pauli observable Ta is a hermitian op-
erator with ±1 eigenvalues of form

Ta := ξ(a)Z(aZ)X(aX) := ξ(a)

n⊗
i=1

Z
aZi
i

n⊗
j=1

X
aXj
j , (1)

where a := (aZ , aX) is a 2n-bit string and ξ(a) is a phase.
Pauli observables define an operator basis that we call Tn.

A qubit schemeMO of quantum computation via state in-
jection (QCSI) consists of a resource M of initial “magic”
states and 3 kinds of allowed operations:

1. Measurement of any Pauli observable in a set O.

2. A group G of “free” Clifford gates that preserve O via
conjugation up to a global phase.

3. Classical processing and feedforward.

Adaptive circuits of operations 1-3 may be combined with
classical post-processing in order to simulate measurements
of Pauli observables that are not in O (cf. Fig. 1). We name
the latter “inferable” and let I be the superset ofO defined by
them. Analogously, we let J be the set of sets of compatible
Pauli observables that can be inferred jointly, which define the
“contexts” of our computational model. As shown in Fig. 1,
not every set of compatible Pauli observables is necessarily in
J . Yet, A ∈ I implies that {A} ∈ J . Furthermore, for any
pair of observables {A,B} ∈ J and α ∈ R, the observables
AB, αA can be inferred jointly by measuring A,B, since the
eigenvalues of the latter determine those of the former. Hence,

{A,B} ∈ J ⇒ {A,B,AB,αA} ∈ J , ∀α ∈ R. (2)

Constraint (C2) holds iff Tn ⊂ I, i.e., iff the outcome distri-
bution of any Pauli observable can be sampled from via mea-
surements in O and classical post-processing.

Contextuality. Above, imposing (C1) means that there
exists a quantum state ρ whose measurement statistics can

XX

XZ

ZZ

ZX

Z1Z2

X1 X2

 YY

inferable observables

directly measurable
observables
non-inferable
observable

FIG. 1. We consider an example scheme MO on 2-qubits with
O = {X1, X2, Z1, Z2}. Straight lines connect maximal sets of
jointly inferable observables. Here, the correlator X1X2 (Z1Z2)
is not in O but can be inferred by measuring X1, X2 (Z1, Z2) and
multiplying their outcomes. (This scheme is reminiscent of the syn-
drome measurement of subsystem codes [10].) Yet, X1X2 cannot
be inferred jointly with Z1Z2 because a forbidden measurement of
X1, X2, Z1, Z2 would be required to reproduce all quantum correla-
tions, but after measuring, e.g., Z1 and Z2 to infer Z1Z2 the outcome
statistics of X1X2 become uniformly random. Similarly, X1Z2 and
Z1X2 can be separately inferred but not jointly. Further, Y Y cannot
be inferred (observables in O cannot distinguish its eigenstates).

be reproduced by a non-contextual hidden variable model
(NCHVM), which we introduce next.

Definition 1. A NCHVM (S, qρ,Λ) for the state ρ with re-
spect to a scheme MO consists of a probability distribution
qρ over a set S of internal states and a set Λ = {λν}ν∈S of
value assignment functions λν : I → {±1} that fulfill:

(i) For any λν ∈ Λ and M ∈ J the real numbers
{λν(A)}A∈M are compatible eigenvalues: i.e. there
exists a quantum state |ψ〉 such that

A|ψ〉 = λν(A)|ψ〉, ∀A ∈M. (3)

(ii) The distribution qρ satisfies

〈A〉ρ = tr(Aρ) =
∑
ν∈S

λν(A)qρ(ν), ∀A ∈ I (4)

The state ρ is said to be “contextual” or to “exhibit contextu-
ality” if no NCHVM with respect toMO exists.

Qubit QCSI for which all possible inputs exhibit contextu-
ality are forbidden by (C1). Specifically, in this work, O must
be a strict subset of Tn [7, 8].

Main Result. We now establish contextuality as a resource
for quantum computational universality for all qubit QCSI
schemes that fulfill (C1). Below, we call a schemeMO uni-
versal if for any integer n ≥ 1 and V ∈ U(2n) there exists a
finite-size circuit ofMO operations that prepares the n-qubit
state V |0〉 up to any positive trace-norm error.

Theorem 1. A qubit QCSI schemeMO satisfying (C1) is uni-
versal for n ≥ 3 qubits only if its magic states exhibit contex-
tuality.

Theorem 1 applies even in the setting where the computa-
tion happens in an encoded subspace, reproducing the rebit
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results of Ref. [6]. We provide a general proof of this fact in
a companion paper [9] and show it here in the encoding-free
scenario under an additional assumption, denoted (?), that ev-
ery qubit must be measurable in at least two complementary
Pauli bases. This requirement enforces MO to exhibit the
phenomenon of quantum complementarity and simplifies our
main argument while preserving its core structure.

The proof of theorem 1 relies on a characterization of non-
contextual hidden variable models for qubit QCSIs. We make
three key observations about such models.

First, by applying Def. 1.(i) toM := {A,B,AB,αA} ∈ J
as in (2), we derive two constraints

λν(AB) = λν(A)λν(B), λν(αA) = αλν(A), (5)

that any λν ∈ Λ must fulfill for any pair {A,B} ∈ J , α ∈ R.
Second, we prove the following lemma.

Lemma 1. For any QCSI scheme MO fulfilling (C1) the
phase ξ(a) in (1) can be chosen w.l.o.g. so that

TaTb = Ta+b for any triple {Ta, Tb, TaTb} ∈ J . (6)

Proof. Let ξ be given and let λν be a consistent value as-
signment for the scheme MO. W.l.o.g., we can redefine
T ′n := {T ′a := λν(Ta)Ta, Ta ∈ Tn} and O′ = {T ′a, Ta ∈ O}
introducing a classical relabeling of measurement outcomes,
without changing any quantum feature of the scheme. Using
Ta+b = ±TaTb, we obtain

T ′a+b = λν(Ta+b)Ta+b = λ((±1)TaTb)(±1)TaTb
(5)
= (±1)2λ(TaTb)TaTb

(5)
= λ(Ta)Taλ(Tb)Tb = T ′aT

′
b.

Last, we observe that for any M ∈ J , |ψ〉 as in (3) and
Tb ∈ Tn, the state Tb|ψ〉 is a joint eigenstate of M :

(γTa)Tb|ψ〉 =
(
λν(γTa)(−1)[a,b]

)
Tb|ψ〉, ∀γTa ∈M, (7)

where [a, b] := aX · bZ + aZ · bX mod 2; combined with (5),
this induces a group action of Z2n

2 on value assignments

λν
u→ λν+u(Ta) := λν(Ta)(−1)[u,a], ∀u ∈ V. (8)

With these tools, we arrive at a powerful intermediate result,
namely, a method to construct NCHVMs that can simulate
qubit QCSIs on non-contextual inputs.

Lemma 2. For any qubit scheme MO fulfilling (C1) and
any quantum circuit C of MO operations, if there exists a
NCHVM (S, qρin ,Λ) for some given input state ρin, there then
exists a NCHVM (S, qρout ,Λ) for the output ρout := C(ρin).

Lemma 2 establishes that contextuality cannot be freely
generated in qubit QCSI. A surprising aspect of this fact is
that it holds for circuits that contain intermediate measure-
ments. Intuitively, unitary gates in G must induce an action on
the set of non-contextual states since they preserve the set O.

However, the evolution of non-contextual states under mea-
surement is far from intuitive since the latter can often prepare
states that are inaccessible to gates [11].

Lemma 2 leads to a simple classical random-walk algo-
rithm for sampling from the output distribution of all measure-
ments in C, which is further efficient if oracles for sampling
from qρin and computing any λν ∈ Λ are given. The random
walk first samples a state ν0 ∈ S from qρin and, upon mea-
surement of Tat ∈ O at time t, outputs λνt(Tat) given νt and
updates νt → νt + a with 1/2 probability. The correctness of
this algorithm follows from Eq. (9) below and is analyzed in
detailed in [9].

Proof. We fix a phase convention for Ta so that Eq. (6) in
Lemma 1 holds and introduce a simplified notation

λν(a) := λν(Ta), where Ta ∈ I, a ∈ Z2n
2 .

Because free unitaries preserve O they can be propagated out
of C via conjugation. Hence, we can w.l.o.g. assume that C
consists only of measurements. Our proof is by induction.
At time t = 1, ρ1 = ρin has an NCHVM by assumption.
At any other time t + 1, given an NCHVM (S, qρt ,Λ) for
the state ρt, we construct an NCHVM (S, qρt+1

,Λ) for ρt+1.
Specifically, let Tat ∈ O be the observable measured at time t
with corresponding outcome st ∈ {±1}, s≺t := (s1, . . . , st)
be the string of prior measurement records, and p(st|s≺t) the
conditional probability of measuring st; we will now show
that ρt+1 admits the hidden-variable representation

qρt+1(ν) :=
δst,λν(at)

p(st|s≺t)
qρt(ν) + qρt(ν + at)

2
, (9)

where p(st|s≺t) can be predicted by the HVM, since
2p(st|s≺t) = 〈I + stTat〉ρt = 〈I〉ρt + st〈Tat〉ρt—which are
known by the induction promise. Our goal is to show that
(S, qρt+1

,Λ) predicts the expected value of any Ta ∈ I mea-
sured at time t+ 1. For this, we derive a useful expression,

〈Ta〉HVM
ρt+1

=
∑
ν∈S

qρt+1
(ν)λν(a) (10)

(9)
=
∑
ν∈S

δst,λν (at)
qρt (ν)

2p(st|s≺t) λν(a) +
∑
ν∈S

δst,λν (at)
qρt (ν+at)

2p(st|s≺t) λν(a).

(8)
=
∑
ν∈S

δst,λν (at)
qρt (ν)

2p(st|s≺t) λν(a) +
δst,λν (at)

qρt (ν)

2p(st|s≺t) λν(a)(−1)[a,at],

which we evaluate on two cases:
(A) Ta, Tat anticommute, hence, [a, at] = 1. We get
〈Ta〉HVM

ρt+1
= 0, in agreement with quantum mechanics.

(B) Ta, Tat commute. In this case [a, at] = 0. Using the
identity δs,λ = (1 + sλ)/2, s, λ ∈ {±1}, we obtain

〈Ta〉HVM
ρt+1

=
∑
ν∈S

1 + stλν(at)

2p(st|s≺t)
qρt(ν)λν(a)

(5)
=

∑
ν∈S qρt(ν)λν(a) + st

∑
ν∈S qρt(ν)λν(a+ at)

2p(st|s≺t)
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Finally, by induction hypothesis, we arrive at

〈Ta〉HVM
ρt+1

=
〈Ta〉ρt + st〈Ta+at〉ρt

2p(st|s≺t)
(6)
=

tr
(
ρt
I+stTat

2 Ta

)
p(st|s≺t)

= tr


[
I+stTat

2 ρt
I+stTat

2

]
p(st|s≺t)

Ta

 = tr (ρt+1Ta)

which is again the quantum mechanical prediction.

Finally, we prove our main result.

Proof of theorem 1. We derive a contradiction by assuming
(A1) that MO is universal and (A2) that all magic states in
M are non-contextual. We first consider the computation to
be error-free and drop this assumption at the end.

Recall that, by assumption (?), two complementary Pauli
observables, denoted Zi, Xi ∈ O w.l.o.g., can be measured
on any qubit. By (A1), the schemeMO can prepare the en-
coded GHZ state |ψ〉 that is uniquely stabilized by X1X2X3,
−X1Z2Z3, −Z1X2Z3, −Z1Z2X3. Furthermore, MO can
also infer the value of any correlator of form A1A2A3 with
Ai ∈ {Xi, Zi} (in particular, |ψ〉’s stabilizers) by measuring
A1, A2, A3 individually. Quantum mechanics predicts

〈X1X2X3 −X1Z2Z3 − Z1X2Z3 − Z1Z2X3〉QM
ψ = 4.

On the other hand, by (A2) and Lemma 2, there exists an
NCHVM for |ψ〉 with respect to all quadruples of form
{A1, A2, A3, A1A2A3, Ai ∈ Xi, Zi}. Using constraint (5)
for non-contextual value assignments, we derive an inequality
for the NCHVM’s prediction

〈X1X2X3 −X1Z2Z3 − Z1X2Z3 − Z1Z2X3〉HVM
ψ ≤ 2,

originally due to Mermin [12], which contradicts quantum
mechanics. Hence, either (A1) or (A2) must be false.

Last, our argument holds if arbitrarily small errors are
present because the HVM’s prediction deviates from the quan-
tum mechanical one by a finite amount (larger than 2).

A qubit QCSI scheme powered by contextuality. Here we
prove that for any number n of qubits there exists a univer-
sal qubit QCSI scheme MO that fulfills the conditions (C1)
and (C2). The O measurements available in this scheme are
all single-qubit Pauli measurements, the group G contains all
single-qubit Clifford gates, and the magic state is locally uni-
tarily equivalent to a 2D cluster state. This family of examples
demonstrates that the classification provided by our main re-
sult (Theorem 1) is not empty.

We now show that single-qubit Pauli measurents satisfy
(C1) and (C2). First, note that the value of any Pauli ob-
servable can be inferred by measuring its single-qubit ten-
sor components, hence, local QCSI fulfills (C2). Second, we
show (C1) is also met by giving a NCHVM for the mixed
state ρ = I/2n with respect to single-qubit operations. The
most general joint measurement in J that we can implement

X/YX X

X X XX X XX X XX X XX

Z

Z

Z Z Z Z ZZZ

Z Z Z Z ZZZ

Z ZZZ

Z Z Z Z ZZZ

Z Z Z ZZZ

Z Z Z Z ZZZ
(a) (b)

A

FIG. 2. QCSI with modified cluster state |Ψ〉 and single-qubit Xi,
Yj , Zk Pauli measurements: the Z-measurements are used to cut out
of the plane a web corresponding to some layout of a quantum cir-
cuit, while the X-measurements drive the MBQC-simulation of this
circuit [13]. By “re-routing” a wire piece, one may choose between
implementing and not implementing a non-Clifford gate. (a) Iden-
tity operation on the logical state space. (b) X or Y is measured
adaptively to implement a logical e−iπ/8Z gate in MBQC [13].

with the latter is to measure n single-qubit Paulis σ1, . . . , σn
on distinct qubits, which lets us infer the value of any ob-
servable γ

⊗n
i=1 σ

αi
i with α ∈ Zn2 , γ ∈ R. Hence, the

function λ0(
⊗n

i=1 σ
αi
i ) := 1, which is a joint eigenvalue of

{
⊗n

i=1 σ
αi
i : α ∈ Zn2}, extends linearly to a value assignment

fulfilling Def. 1(i). Picking Tn = {I,X, Y, Z}⊗n, we ob-
tain an NCHVM via (8) with value assignments λb(Ta) :=
(−1)[a,b], b ∈ Z2n

2 wherein ρ corresponds to a probabil-
ity distribution qρ(b) := 1/22n: indeed, our HVM predicts
〈γTa〉ρ = γ for Ta = T0 = I and 0 otherwise, matching
the quantum mechanical prediction—this can be checked by
computing the average of λb(Ta) over b in each case.

Last, we present a family of magic states that promote
our local QCSI scheme to universality. Unlike in standard
magic state distillation [1], which relies on product magic
states, our scheme has no entangling operations and requires
entanglement to be present in the input to be universal. We
show that a possibility is to use a modified cluster state |Ψ〉
that contains cells as in Fig. 2 with “red-site” qubits that
are locally rotated by a T -gate e−iπ/4Z . Our approach is
to use such state to simulate a universal scheme of mea-
surement based quantum computation based on adaptive
local measurements {Z,X, Y,X ± Y/

√
2} on a regular 2D

cluster state [13]. Local Pauli measurements are available
by assumption. Now, an on-site measurement of X or
Y on one of the red-qubits of |Ψ〉 has the same effect as
measuring (X ± Y )/

√
2 on a cluster state. To complete the

simulation, it is enough to re-route the measurement-based
computation through a red-site (this can be done with the
available X measurements [13]) whenever a measurement of
(X ± Y )/

√
2 is needed. (See Fig. 2 for illustration.)

Conclusion. In this work we investigated the role of con-
textuality in qubit QCSI and proved that it is a necessary re-
source for all such schemes that meet a simple minimal con-
dition: namely, that the allowed measurements do not exhibit
state-independent contextuality. Our result applies if and only
if contextuality emerges as a physical property possessed by
quantum states (with respect to the measurements available in
the computational model). We extended earlier results on odd-
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prime dimensional qudits [4, 5] and rebits [6], and thereby
completed establishing contextuality as a resource in QCSI
in arbitrary prime dimensions. We conjecture that this result
generalizes to all composite dimensions [14] (the composite
odd case was recently covered after completion of this work
[15]) and to algebraic extensions of QCSI models based on
normalizer gates [11, 16–19]. Further, we demonstrated the
applicability of our result to a concrete qubit QCSI scheme
that does not to exhibit state independent contextuality while
retaining tomographic completeness.

Finally, we refer to a companion paper [9] where we in-
vestigate the role of Wigner functions in qubit QCSI. There,
we use Wigner functions to motivate the near-classical sector
of the free operations in qubit QCSI, and relate their Wigner-
function negativity to contextuality and hardness of classical
simulation. In comparison, in this work, constraint (C1) com-
pletely removes the need to introduce Wigner functions, and
leads us to the simplest and most general proof that contex-
tuality can be a resource in qubit QCSI that we are aware of.
For this reason, we regard the establishing of condition (C1)
as a fundamental structural insight of our work.
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