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Quantum hypothesis testing is one of the most basic tasks in quantum information theory and has fundamental

links with quantum communication and estimation theory. In this paper, we establish a formula that character-

izes the decay rate of the minimal Type-II error probability in a quantum hypothesis test of two Gaussian states

given a fixed constraint on the Type-I error probability. This formula is a direct function of the mean vectors

and covariance matrices of the quantum Gaussian states in question. We give an application to quantum illumi-

nation, which is the task of determining whether there is a low-reflectivity object embedded in a target region

with a bright thermal-noise bath. For the asymmetric-error setting, we find that a quantum illumination trans-

mitter can achieve an error probability exponent stronger than a coherent-state transmitter of the same mean

photon number, and furthermore, that it requires far fewer trials to do so. This occurs when the background

thermal noise is either low or bright, which means that a quantum advantage is even easier to witness than in the

symmetric-error setting because it occurs for a larger range of parameters. Going forward from here, we expect

our formula to have applications in settings well beyond those considered in this paper, especially to quantum

communication tasks involving quantum Gaussian channels.

Introduction—Hypothesis testing is critical for the scien-

tific method [1], underlying our ability to distinguish various

models of reality and draw conclusions accordingly. It also

has fundamental links with both communication [2] and esti-

mation theory [3]. By increasing the number of independent

samples observed in a given experimental setup, one can re-

duce the probability of making an incorrect inference, thus

increasing the confidence in conclusions drawn from the ex-

periment.

In the most basic setting of binary hypothesis testing the

goal is to distinguish two hypotheses (null and alternative).

There are two ways that one can err: a Type-I error (“false

alarm”) occurs when rejecting the null hypothesis when it is

in fact true, and analogously a Type-II error (“false negative”)

occurs when incorrectly rejecting the alternative hypothesis.

If it is possible to obtain many independent samples, one can

study how error probabilities decay as a function of the num-

ber of samples for an optimal sequence of tests. Most promi-

nently, the Chernoff bound [4] tells us that both error probabil-

ities decay exponentially fast (in the number of samples) for

an appropriately chosen sequence of tests. Beyond this, it is

often desirable to treat the two types of errors asymmetrically.

For example, the experimenter may only require a fixed bound

on the “false alarm” probability and then seek to minimize

the “false negative” probability subject to this constraint. The

well known result here is the Chernoff–Stein lemma (some-

times called Stein’s lemma) [4], which establishes how fast

the “false negative” probability decays in this setting.

Since the rise of quantum information science, researchers

have generalized these notions to the fully quantum setup,

which is arguably more fundamental than the classical set-

tings discussed above. Here the basic setting involves deter-

mining whether M ≥ 1 quantum systems are described by

the density operator ρ⊗M or another density operator σ⊗M ,

and the experimenter is allowed to perform a collective quan-

tum measurement on all M systems in order to guess which is

the case. The fundamental results are the quantum Chernoff

bound [5, 6], which states that the quantum Chernoff infor-

mation is the optimal decay rate when minimizing both error

probabilities simultaneously, and the quantum Stein’s lemma

[7, 8], which states that the quantum relative entropy between

ρ and σ is the optimal decay rate for the Type-II error probabil-

ity given a fixed (independent of M ) constraint on the Type-I

error probability. In more recent years, we have seen strong

refinements of quantum Stein’s lemma [9–13] that character-

ize the decay in higher orders of M and are crucial for a finite-

size analysis.

One of the major applications of the results of quantum

hypothesis testing is quantum illumination [14]. In the set-

ting of quantum illumination, a source emits photons entan-

gled in signal and idler beams, and the signal beam is sub-

sequently subjected to a modulation, loss, and environmental

noise. A quantum receiver then makes a collective measure-

ment on both the returned signal and idler beams in order to

determine which modulation was applied. The typical task

considered in previous work is to determine whether a tar-

get region containing a bright thermal-noise bath has a low-

reflectivity object embedded [14, 15]. Alternatively, one could

also use the quantum illumination setup as a secure communi-

cation system, as proposed in [16]. After the original proposal

of quantum illumination [14], a full Gaussian state treatment

appeared [15] and strengthened the predictions of [14]. The

upshot is that quantum illumination can offer a significant per-

formance advantage over a classical coherent-state transmit-
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ter of the same average photon number, when considering the

sensing application mentioned above. To date, several exper-

iments have been conducted that demonstrate the advantage

quantum illumination offers [17–20].

Hitherto quantum illumination has mostly been considered

in the symmetric-error setting [15, 20], and as such, one of

the main technical tools employed in the analysis of quantum

illumination is the quantum Chernoff bound. However, there

are many scenarios where one is interested in the performance

of quantum illumination in the asymmetric-error setting. In-

deed, one might be willing to accept a particular Type-I error

(“false alarm”) probability (the error being to declare a target

present when in fact it is not), and then minimize the Type-II

error (“false negative”) probability subject to this constraint.

In this paper, we determine the second-order refinement

of quantum Stein’s Lemma in Gaussian quantum hypothesis

testing. As our main result we derive an analytical formula

that expresses the second-order behavior for any two Gaus-

sian states as a function of their vector means and covariance

matrices. Our result has applications to quantum illumination

in the asymmetric-error setting, where we find that there are

significant gains over a classical coherent-state emitter. No-

tably, we find that the quantum advantage is even easier to

witness than in the symmetric-error setting because it occurs

for a larger range of parameters.

We expect our formula to have applications well beyond

the setting considered here, to various tasks in quantum com-

munication theory. In fact, it is the basis for the strongest

known upper bounds on quantum key distribution protocols

conducted over quantum Gaussian channels [21, 22]. In light

of this, we expect our result to be useful in establishing sharp

refinements of various capacities of quantum Gaussian com-

munication channels, when combined with generalizations of

the methods from [23–27].

To elaborate on our main result, if the task is to distin-

guish ρ⊗M from σ⊗M and the Type-I error cannot exceed

ε ∈ (0, 1), then the optimal Type-II error probability β takes

the exponential form

exp
[

−
(

Ma+
√
MbΦ−1(ε) +O(lnM)

)]

. (1)

The optimal constant a ≥ 0 was identified in [7, 8] to be the

quantum relative entropy [28], defined as a = D(ρ‖σ) ≡
〈ln ρ− lnσ〉ρ for faithful σ where we used the convention

〈·〉ρ ≡ Tr{ρ ·}. The optimal constant b ≥ 0 was identified

in [9, 10, 13] to be the quantum relative entropy variance, de-

fined in terms of the variance of the operator ln ρ− lnσ

b = V (ρ‖σ) ≡ 〈[ln ρ− ln σ −D(ρ‖σ)]2〉ρ . (2)

In the above, we have also used the cumulative distribution

function for a standard normal random variable: Φ(y) ≡
1√
2π

∫ y

−∞ dx exp
(

−x2/2
)

. The derivation of [13] also ap-

plies to particular states on separable Hilbert spaces [29], of

which Gaussian states are examples.

An explicit formula for the quantum relative entropy be-

tween any two Gaussian states, as a function of their mean

vectors and covariance matrices, was given in [30] and re-

fined in [31]. Here we derive an explicit formula for the quan-

tum relative entropy variance of two Gaussian states, given

as a function of their mean vectors and covariance matrices.

The formula allows for a deeper understanding of quantum

hypothesis testing of Gaussian states. We state our result af-

ter a brief recollection of the Gaussian state formalism (see

[32, 33] for detailed reviews), and provide a detailed proof in

the appendix. Finally, we apply our formula in the context of

quantum illumination, giving a characterization of its perfor-

mance in the asymmetric-error setting.

Related work—The authors of [34] considered asymmetric

hypothesis testing of quantum Gaussian states, deriving a for-

mula for the quantum Hoeffding bound [6, 35–37] in the con-

text of Gaussian state discrimination. However, the setting of

the quantum Hoeffding bound is conceptually different from

what we consider here.

Gaussian state formalism—We begin by reviewing some

background on Gaussian states and then review a formula for

quantum relative entropy from [30, 31] (see [31, 32] for more

details on the conventions used). Our development applies to

n-mode Gaussian states, where n is some fixed positive in-

teger. Let x̂j denote each quadrature operator (2n of them

for an n-mode state), and let x̂ ≡ [q̂1, . . . , q̂n, p̂1, . . . , p̂n] ≡
[x̂1, . . . , x̂2n] denote the vector of quadrature operators, so

that the first n entries correspond to position-quadrature oper-

ators and the last n to momentum-quadrature operators. The

quadrature operators satisfy the commutation relations:

[x̂j , x̂k] = iΩj,k, (3)

where Ω =

[

0 1
−1 0

]

⊗ In and In is the n× n identity matrix.

We also take the annihilation operator â = (q̂ + ip̂) /
√
2. Let

ρ be a Gaussian state, with the mean-vector entries 〈x̂j〉ρ =

µρ
j , and let µρ denote the mean vector. The entries of the

Wigner function covariance matrix V ρ of ρ are given by

V ρ
j,k ≡ 1

2

〈{

x̂j − µρ
j , x̂k − µρ

k

}〉

ρ
. (4)

A 2n × 2n matrix S is symplectic if it preserves the sym-

plectic form: SΩST = Ω. According to Williamson’s theo-

rem [38], there is a diagonalization of the covariance matrix

V ρ of the form, V ρ = Sρ (Dρ ⊕Dρ) (Sρ)
T
, where Sρ is a

symplectic matrix and Dρ ≡ diag(ν1, . . . , νn) is a diagonal

matrix of symplectic eigenvalues such that νi ≥ 1/2 for all

i ∈ {1, . . . , n}. We can write the density operator ρ in the

exponential form [30, 39–41],

ρ = Z−1/2
ρ exp

[

−1

2
(x̂ − µρ)TGρ(x̂− µρ)

]

, (5)

with Gρ ≡ −2ΩSρ [arcoth(2Dρ)]
⊕2

(Sρ)
T
Ω, (6)

and Zρ ≡ det(V ρ + iΩ/2), where arcoth(x) ≡ 1

2
ln
(

x+1

x−1

)

with domain (−∞,−1) ∪ (1,+∞). Note that we can also
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write Gρ = 2iΩarcoth(2iV ρΩ), so that Gρ is represented

directly in terms of the covariance matrix V ρ (see the supple-

mentary material on how to compute the symplectic decompo-

sition of V ρ). By inspection, the G and V matrices are sym-

metric, which is critical in our analysis below. As a result,

Tr{GΩ} = Tr{V Ω} = 0 because G and V are symmetric

while Ω is antisymmetric. In what follows, we adopt the same

notation for quantities associated with a density operator σ,

such as µσ , V σ , Sσ , Dσ , Zσ , and Gσ .

Relative entropy for Gaussian states—We first revisit the

relative entropy calculation from [30], but following the par-

ticular aspects of [31]. Suppose for simplicity that ρ and σ
are zero-mean Gaussian states. By employing the exponential

form in (5), we see that

〈ln ρ− lnσ〉ρ =
1

2

[

lnZσ − lnZρ −
〈

x̂TΓx̂
〉

ρ

]

, (7)

whereΓ ≡ Gρ−Gσ is symmetric. To evaluate the expectation
〈

x̂TΓx̂
〉

ρ
, we can use that x̂kx̂l =

1

2
({x̂l, x̂k} − [x̂l, x̂k]) =

1

2
({x̂l, x̂k} − iΩl,k) and write

〈

x̂TΓx̂
〉

ρ
as

∑

k,l

Γk,l 〈x̂kx̂l〉ρ =
∑

k,l

Γk,lV
ρ
l,k = Tr{ΓV ρ}, (8)

implying that D(ρ‖σ) = [ln(Zσ/Zρ)− Tr{ΓV ρ}] /2. For

states ρ and σ that are not zero mean, one can incorporate

a shift into the above calculation to find that

D(ρ‖σ) =
[

ln(Zσ/Zρ)− Tr{ΓV ρ}+ γTGσγ
]

/2, (9)

where γ ≡ µρ − µσ . Alternatively, one can write the formula

for relative entropy as D(ρ‖σ) = [ln(Zσ) + Tr{GσV
ρ} +

γTGσγ]/2−
∑n

i=1
g(νρi −1/2),where {νρi }i are the symplec-

tic eigenvalues of ρ and g(x) ≡ (x+1) ln(x+1)−x lnx [42].

Relative entropy variance for Gaussian states—The fol-

lowing theorem is our main result.

Theorem 1. For Gaussian states ρ and σ, the relative entropy

variance from (2) is given by

V (ρ‖σ) = Tr{(ΓV ρ)2}
2

+
Tr{(ΓΩ)2}

8
+ γTGσV

ρGσγ,

(10)

where Γ ≡ Gρ − Gσ , Gρ and Gσ are defined from (6), Ω is

defined in (3), V ρ is defined in (4), and γ ≡ µρ − µσ .

To begin with, let us suppose that the states ρ and σ have

zero mean. The calculation then begins with the definition

of the relative entropy variance and proceeds through a few

steps:

V (ρ‖σ) =
〈

(

− 1

2
x̂TΓx̂+ 1

2

〈

x̂TΓx̂
〉

ρ

)2
〉

ρ

(11)

= 1

4

[

〈

(

x̂TΓx̂
)2
〉

ρ
−
〈

x̂TΓx̂
〉2

ρ

]

(12)

= 1

4

[

〈

(

x̂TΓx̂
)2
〉

ρ
− [Tr{ΓV ρ}]2

]

, (13)

where the last line follows from (8). At this point, it remains to

calculate 〈(x̂TΓx̂)2〉ρ, which we do in the supplementary ma-

terial. To summarize the calculation, one needs to expand the

operator (x̂TΓx̂)2, leading to an expression of order four in

the quadrature operators. After employing commutators and

anticommutators to bring this operator into Weyl symmetric

form [43] and at the same time employing symmetries of the

dihedral subgroup of the symmetric group S4, we can invoke

Isserlis’ theorem [44] regarding higher moments of Gaussians

to evaluate it. We find that 1

4

〈

(

x̂TΓx̂
)2
〉

ρ
is equal to

1

4
[Tr{ΓV ρ}]2 + 1

2
Tr{ΓV ρΓV ρ}+ 1

8
Tr{ΓΩΓΩ}, (14)

which, after combining with (13), leads to the formula in (10)

for zero-mean states. Incorporating a shift then leads to the

full formula in (10). We provide full details of the calculation

described above and generalize it to arbitrary Gaussian states

in the supplementary material. The supplementary material

also argues how the formula is well defined even if ρ does not

have full support and provides a further simplification of the

formula for two-mode Gaussian states with covariance matri-

ces in standard form.

Application to quantum illumination—In the setting of

quantum illumination a transmitter irradiates a target region

basked in thermal noise in which a low-reflectivity object may

be embedded. Let âS denote the field-mode annihilation op-

erator for the signal mode which is transmitted. We take the

null hypothesis to be that the object is not there, and if this

is the case, the annihilation operator for the return signal is

âR = âB , where âB represents an annihiliation operator for a

bath mode in a thermal state θ(NB) of mean photon number

NB > 0. We take the alternative hypothesis to be that the

object is there, and in this case, âR =
√
ηâS +

√
1− ηâB ,

where η ∈ (0, 1) is related to the reflectivity of the object

and âB is now in a thermal state of mean photon number

NB/ (1− η) [45].

If we prepare the signal mode in the coherent state |
√
NS〉

of mean photon number NS > 0, then the null hypothesis

state ρcoh is a thermal state θ(NB) with mean vector (0, 0) and

covariance matrix (NB + 1/2) I2, and the alternative hypoth-

esis state σcoh is a displaced thermal state, with mean vector

(
√
2ηNS , 0) and covariance matrix (NB + 1/2) I2. It is also

easy to check that the G matrix from (6) for both of these

states is equal to 2 arcoth(2NB + 1)I2.

Plugging into the formula for relative entropy and relative

entropy variance, we find that these quantities simplify as fol-

lows for the coherent-state transmitter:

D(ρcoh‖σcoh) = ηNS ln(1 + 1/NB), (15)

V (ρcoh‖σcoh) = ηNS (2NB + 1) ln2(1 + 1/NB). (16)

In calculating the above, note that the covariance matrices for

ρcoh and σcoh are the same, so that Γ = 0 in this case, and we

only need to calculate the terms involving γ in (9) and (10).

What we see is that as the signal photon numberNS increases,
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so does the first order term MD(ρcoh‖σcoh) in the Type-II er-

ror probability exponent, indicating a more rapid convergence

to zero. However, the second order term
√
MbΦ−1(ε) is ac-

tually decreasing for all ε ∈ (0, 1/2) as NS increases, due to

the fact that Φ−1(ε) < 0 for this range of ε.

Now if the transmitter has a quantum memory available,

then it can store an idler mode entangled with the signal mode

and conduct a quantum illumination strategy. The state we

consider is the two-mode squeezed vacuum, with the reduced

state of the signal mode having mean photon number NS .

This state has mean vector equal to zero and covariance ma-

trix given by

[

µ c
c µ

]

⊕
[

µ −c
−c µ

]

, where µ = NS + 1/2

and c =
√

µ2 − 1/4. The null hypothesis state ρQI for this

setup has mean vector equal to zero and the covariance ma-

trix

[

NB + 1/2 0
0 µ

]

⊕
[

NB + 1/2 0
0 µ

]

, implying that the re-

turn and idler modes are in a product state. The alternative

hypothesis state σQI has mean vector equal to zero and the

covariance matrix

[

γ
√
ηc√

ηc µ

]

⊕
[

γ −√
ηc

−√
ηc µ

]

, where

γ ≡ ηNS +NB + 1/2.

While the expressions for relative entropy and relative en-

tropy variance for the quantum illumination transmitter are too

long to report here, we can evaluate them to first and second-

order in NS (an asymptotic expansion about NS = ∞ while

keeping NB fixed), respectively

D(ρQI‖σQI) =
ηNS

1− η
ln

(

1 +
1− η

NB

)

+O(1), (17)

V (ρQI‖σQI) =

[

ηNS

1− η
ln

(

1 +
1− η

NB

)]2

+O(NS). (18)

Alternatively, we can evaluate them to first order in NB (an

asymptotic expansion about NB = ∞ while keeping NS

fixed):

D(ρQI‖σQI) =
ηNS(NS + 1)

NB
ln

(

1 +
1

NS

)

+O

(

1

N2
B

)

,

(19)

V (ρQI‖σQI) =
ηNS(NS + 1)(2NS + 1)

NB
ln2

(

1 +
1

NS

)

+O

(

1

N2
B

)

. (20)

Details about the derivation are in the supplementary material.

There are several regimes in which the quantum illumi-

nation transmitter outperforms the coherent-state transmitter.

We can consider the regime of low background thermal noise,

where NS ≫ 1 and NB ≪ 1, and also the regime NS ≪ 1
and NB ≫ 1 as considered in [15]. Figures 1(a) and (b) com-

pare the Type-II error probability exponents of the quantum il-

lumination transmitter and the coherent-state transmitter for a

Type-I error probability ε = 0.001 and ε = 0.01, respectively,

showing both the first-order terms and the Gaussian approx-

imations from (1). Not only does the quantum illumination

transmitter outperform the coherent-state transmitter in expo-

nent, but the Gaussian approximation indicates that far fewer

trials are required to achieve this gain. Moreover, when com-

pared to the symmetric-error setting, the quantum advantage

is even easier to witness because it occurs for a larger range

of parameters.

Discussion—We have characterized the Type-II error prob-

ability exponent of hypothesis testing of Gaussian states in

terms of the relative entropy and the relative entropy vari-

ance of two Gaussian states. Our formula for the relative en-

tropy variance should find applications well beyond the set-

tings considered here, especially to communication tasks for

quantum Gaussian channels. As an application of our result,

we find that not only does a quantum illumination strategy

outperform a coherent-state transmitter with respect to error

probability exponent, but in some cases it requires far fewer

trials in order to achieve the optimal error probability expo-

nent.
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FIG. 1. Comparison of Type-II error probability exponent, R = − ln β/M , for the quantum illumination transmitter and the coherent-state

transmitter with different parameters. In both cases, not only does the quantum illumination transmitter achieve a higher error exponent, but

the Gaussian approximation suggests that far fewer trials are needed to approach this error exponent. The quantum advantage is easier to

witness compared to the symmetric-error setting because it occurs for a larger parameter range.
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