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In this Letter, we study the effect of topological zero modes on Entanglement Hamiltonians and
entropy of free chiral fermions in (1+1)d. We show how Riemann-Hilbert solutions combined with
finite rank perturbation theory allow us to obtain exact expressions for Entanglement Hamiltonians.
In the absence of the zero mode, the resulting Entanglement Hamiltonians consists of local and bi-
local terms. In the periodic sector, the presence of a zero mode leads to an additional non-local
contribution to the entanglement Hamiltonian. We derive an exact expression for this term and for
the resulting change in the entanglement entropy.

Entanglement Hamiltonians (EH) are the next object
to explore in a series of advances in our understanding
the quantum structure of many-body states in field the-
ory and condensed matter [1–8]. Indeed, much work has
been devoted to understanding entanglement entropy, in
a variety of systems, and, subsequently, more detailed in-
formation about the spectrum of reduced density matri-
ces is being investigated as well. Entanglement Hamilto-
nians go one step further in that they contain information
about the entanglement spectrum, as well as about the
associated eigenvectors, and the possibility to understand
the reduced state as a thermal state. Perhaps the most
striking of the recent results about Entanglement Hamil-
tonians is the realization that for a spherical entangling
region in a conformal field theory (CFT), Entanglement
Hamiltonians have a local form in terms of the original
Hamiltonian energy density with a spatially dependent
temperature [9–11]. This result is unusual in its sim-
plicity, as, unfortunately, the computation of EHs is, in
general, much more involved than entropy and spectrum
and only a few results are available. Thus it is a grand
challenge to find additional solvable cases.

Here, we present a new method for computing EHs of
free fermions in the presence of zero modes. Such modes
are usually tied to the appearance of ground state de-
generacies and reflect the nature of topological defects
through unusual properties such as charge fractionaliza-
tion [12] and non-abelian braiding [13] and appear in a
variety of systems from polyacetylene [14] to topological
insulators and superconductors [15–17]. In particular, we
compute EHs for chiral fermions, and study in detail the
effects of the boundary conditions (BC), periodic/anti-
periodic for Majorana and generic for Dirac fermions,
and of the zero modes (present in the case of periodic
boundary conditions) on entanglement. The edge theory
of the p+ ip superconductor provides an explicit realiza-
tion of such a scenario for Majorana fermions and serves
as a concrete physical model for our calculation (see, e.g.
[18]). Wherever available we make contact with previous
results in the literature.

Our approach utilizes the relation between the EH and
the resolvent associated with the fermion Green’s func-

tion adding the contribution of zero modes with an essen-
tially exact re-summation. As we find below, for chiral
fermions, the computation of the resolvent can be re-
cast into a Riemann-Hilbert problem (RHP, see below),
generalizing the approach of Casini and Huerta [1] who
computed the EH for free chiral fermions, albeit with-
out zero modes. Combining the RHP result with exactly
summable perturbation theory, we compute the EH for
chiral Majorana and Dirac fermions on a finite circle.
Our main result is an exact analytic form for the EH,
Eq. (15), with a contribution from the topological zero
given separately in Eq. (21).

The reduced density matrix ρV on a spatial region V is
defined to reproduce expectation values of all operators
OV inside V via the relation TrV(ρVOV) = 〈OV〉. The
EH HV is an effective Hamiltonian inside V given by

ρV =
e−HV

ZV
. (1)

For free fermions, Wick’s Theorem implies that the EH
is a quadratic operator whose kernel (the single parti-
cle EH) HV is uniquely determined by the equal-time
Green’s function

G(x, y) = 〈Ψ(x)Ψ†(y)〉 (2)

via the relation HV = − log((PVGPV )−1 − 1) [19]. Here
PVGPV is the Green’s function restricted to the region V
by the projectors PV . As we demonstrate in the supple-
mentary materials, a similar relation holds for Majorana
fermions ψ, given 〈ψ(x)ψ(y)〉, allowing us to treat the
problem on a parallel footing.

The relation between HV and G may be expressed in
integral form as:

HV = −
∫ ∞

1
2

(L(β) + L(−β)) dβ, (3)

where L(β) is the resolvent [1]

L(β) = (PVGPV − 1/2 + β)−1. (4)

Thus the derivation of the EH reduces to a computation
of a projected Green’s function resolvent. It turns out
that finding the resolvent L(β) can be recast as an RHP.
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This connection between L(β) and the RHP arises as
follows: for free fermions (in the absence of zero modes),
the Green’s function G(x, y) computed on the ground
state, un-restricted to some entangling region V , acts
as a single particle operator that projects onto positive
energy modes. For chiral fermions in (1 + 1)d, the pro-
jection onto positive modes can be interpreted as a pro-
jection onto functions analytic on the upper/lower half of
the complex plane and the computation of the resolvent
(4) (associated with the projection of G onto V ) can be
mapped onto a RHP (see, e.g. [20]). In the case treated
here we have a scalar RHP and so exactly solvable. Suc-
cinctly put, a RHP is a jump problem along a contour
C in the complex plane, for a piecewise analytic matrix
function. Solving it amounts to finding a matrix function
X(z) which is analytic on C�C, and has boundary values
on both sides of C, X±(z), subject to a jump condition
X−1
− (s)X+(s) = v(s) on C, with a given matrix v(s). The

jump function for our case is a scalar determined by the
projector onto V , PV .

Once we have access to the resolvent (4) (either
through the RHP or any other method), we can use it to
explore various deformations of the system that yield sim-
ple perturbations of the Green’s function (2). In partic-
ular, topologically nontrivial background for the fermion
result in the appearance of zero modes [21, 22] manifest-
ing themselves as finite rank perturbations of G(x, y).
The perturbed resolvent is then computed exactly by
summing up the resulting perturbative series.

We carry out this recipe for chiral Dirac/Majorana
fermions on a spatial circle with general boundary condi-
tions. Starting with anti-periodic (Neveu-Schwarz, NS)
fermions on a circle with no gauge field, inserting a π flux
then takes the anti-periodic sector to the periodic (Ra-
mond, R) sector, which has a zero mode whose effect on
the EH we derive explicitly. The appearance of ground
state degeneracy for periodic boundary conditions has
been studied extensively. In particular, Affleck and Lud-
wig [23], introduced the notion of boundary entropy, to
understand the change in degeneracy due to impurities.
As noted in [24], boundary entropy can appear as a sub-
leading contribution to the EE of a finite interval. While
these calculations are usually carried out by looking at
entropy, our EH calculation allows us to study the effect
of degeneracy from the point of view of the local density
matrix. In Eq. (23), we find the exact change in the en-
tanglement entropy (EE) of free chiral fermions between
periodic and anti-periodic BC, for an arbitrary subset of
the circle, and the term in the EH associated with it.

Concretely, we compute the EH on a region V =
∪(aj,bj) as depicted in Fig. 1. Consider a chiral Dirac
fermion in on a ring with periodicity x∼ x + 2πR. As-
suming generic BC, Ψ(x+ 2πR) = Ψ(x)e2παi, the mode

expansion is Ψ(x, t) = 1√
2πR

∑
k∈Z+α bke

−i kR (t−x), where

α ∈ [0, 1). Here α = 1
2 for the NS sector and α = 0

FIG. 1: The entanglement region V = ∪(aj,bj) for fermions on
a ring of radius R considered in the paper, and an associated
Riemann-Hilbert problem.

for the R sector. For α 6= 0, evaluating the equal time
Green’s function on the ground state |Ω〉, defined by

bk>0|Ω〉 = b†k<0|Ω〉 = 0, gives

Gα(x, y)≡〈Ω|Ψ(x)Ψ†(y)|Ω〉=e
iα(x−y)

R n(x, y). (5)

where n(x, y) ≡ 〈x|n|y〉 is the kernel of the single particle

projector n onto momentum modes 〈x|k〉 = 1√
2πR

e
ikx
R

with k a non-negative integer [29]. Explicitly:

n(x, y) ≡ 1

2πR

∞∑
k=0

e
ik(x−y+i0+)

R . (6)

Note that the Gα for α 6= 0 are related by spectral
flow, implemented by the transformation

Gα = UαnU
−1
α , α 6= 0, (7)

where Uα are unitaries that shift momenta by α: Uα|k〉 =
|k + α〉. Moreover, Uα commutes with the spatial pro-
jection PV , implying that the projected resolvents (4)
and EH kernel (3) for different α are also related by a
similarity transform. Thus, we can relate all the α 6= 0
resolvents Lα(β) = UαN(β)U−1

α to the following one:

N(β) ≡
(
PV nPV + β − 1

2

)−1

(8)

As an operator acting on functions defined on V , N(β)
is the resolvent for PV nPV , which is an integrable opera-
tor in the sense of [20, 25]. In general, such operators are
defined on a curve C on a manifold conformally related
to the Riemann Sphere and have a kernel of the form

K(x, y) =

m∑
i=1

fi(x)n(x, y)gi(y), (9)

where n(x, y) is the kernel of a projector onto analytic
functions ”inside” C, and fi, gi are a set of given functions
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defined on C. It is known that the resolvent, (1+K)−1, is
related to the solution of an m×m matrix RHP [20]. In
our case, C is the circle of radius R on the compactified
complex plane Fig. 1. Since we only have a single term
in K, the matrix RHP reduces to the scalar one and can
be stated as follows: Find functions X+/X− that are
analytic inside/outside the unit disc satisfying

X−1
− (x)X+(x) = 1 +

f(x)g(x)

β − 1
2

≡ X(x); x ∈ C. (10)

Equivalently, we can characterize X+/X− as containing
only k positive /negative momentum modes respectively.
This leads to the crucial identities nX−1

+ n = X−1
+ n and

nX−1
− n = nX−1

− , and to the resolvent formula [30]:

N(β) =
1

β − 1
2

(
1− 1

β − 1
2

fX−1
+ nX−g

)
(11)

For our application f = g = ΘV where ΘV is the char-
acteristic function of V (ΘV (x) = 1 if x ∈ V and is 0
otherwise). Denoting

h(β) =
1

2π
ln
β + 1

2

β − 1
2

, (12)

our RHP Eq. (10) reduces to ln(X+(x)) − ln(X−(x)) =
2πh(β)ΘV (x), and has the standard solution

lnX±(x) = ih(β)Z±(x); (13)

Z±(x) =
∑
j ln( e

i(x±iε)
R −e

iaj
R

e
i(x±iε)
R −e

ibj
R

).

Substituting X± from (13) into (11), we find:

〈x|N(β)|y〉 = 1
β−1/2δ(x− y)− e−ih(Z

+(x)−Z+(y))

β2− 1
4

n(x, y)

This form is the finite radius generalization of the result
obtained in [1] for fermions on an infinite line.

The EH in the α 6= 0 sector is obtained by applying
(7) to compute the resolvent and then integrating over β
as in (3). Adapting the procedure described in [1] to our
case, we find:

Hα6=0
V = 4π2eiα

(x−y)
R nPV (x, y)δ(Z+(x)− Z+(y)), (14)

where nPV (x, y) = n(x, y) − 1
2δ(x − y) is the principal

part of n. Using the distribution kernel (14) to compute
explicitly the EH, gives, owing to the δ function, a local
contribution

Hα6=0
V,loc. =−2π

∫
V

dxΨ†
[
i

|Z ′|
d

dx
− (1−2α)

2R|Z ′|
−
( i

2|Z ′|

)
′
]
Ψ,(15)

as well as a bi-local contribution with kernel:

Hα6=0
V, bi-loc. =2π

∑
l;yl(x)6=x

eiα
(x−y)
R |Z ′(x)|−1

R
(
1− e

i(x−y)
R

) δ(x−yl(x)), (16)

where yl(x) are solutions of Z(x) = Z(y).
Let us pause to inspect the single interval result for

α = 1
2 . Since the free fermion is a conformal field the-

ory, the CFT results of [10, 11] suggest that the single
interval EH should be an integral of the energy density
Q ∝ iΨ†∂Ψ. At first glance, (15) seems at odds with this
form, as it contains an additional piece proportional to
the density ρ(x)=Ψ†(x)Ψ(x). However, the CFT expec-
tation and the direct calculation are, in fact, consistent.
Indeed, the interpretation of the CFT local energy tensor
in [10, 11] as an operator, has to be done with care: in
particular, the form −i

∫
dx c(x)Ψ†∂Ψ, is not Hermitian

by itself. However, integration by parts shows that it
is made Hermitian with the addition of a term propor-
tional to an integral over the density (i/2)

∫
dx c′(x)ρ(x),

which is exactly the extra term in Eq. (15) for α = 1/2.
In the path integral formalism of [11], this term can be
derived by identifying the EH as the generator of con-
formal rotations fixing the end points of V , which must
also generate a phase rotation of the Dirac fermion due
to its non-trivial conformal spin. This symmetry gener-
ator is the hermitian form of the local energy operator

given by T00 = −iΨ†(∂xΨ)+i(∂xΨ†)Ψ
2 . Given this definition,

our result (15) takes the form HV =
∫
V
dxβ(x)T00, with

β(x)=2π|Z ′(x)|−1 = 4πR csc a−b
2R sin a−x

2R sin b−x
2R as a lo-

cal entanglement temperature. Turning on a flux then
introduces a shift of T00 by a conserved charge density

−µρ(x) with chemical potential µ = (1−2α)
2R . As shown in

[11], this leads to a generalized first law of EE in which
small excitations of the vacuum causes a change in EE
given by δSV =

∫
V
dx β(x)δ〈(T00 − µρ(x))〉 .

The Ramond sector in which α = 0 requires sepa-
rate consideration, since the zero mode k = 0 acts on
a doubly degenerate ground state subspace of occu-
pied/unoccupied modes. We choose the state dictated by
the zero-temperature limit of the Fermi-Dirac distribu-
tion. For a topological zero mode, Fermi-Dirac gives the
mixed state 1

2 (|occupied〉〈occupied| + |empty〉〈empty|).
In this state [31], the Green’s function is

Gα=0 = n− 1

2
|0〉〈0| (17)

and our Resolvent is

Lα=0(β) = (PV nPV −
1

2
+ β − 1

2
PV |0〉〈0|PV )−1(18)

where |0〉 is the k = 0 momentum mode 〈x|0〉 = 1√
2πR .

The difference relative to the resolvent (8) is that the
zero mode introduces a shift of n by the rank one pertur-
bation − 1

2 |0〉〈0|. We proceed by treating the zero mode
contribution as a Dyson perturbative expansion, which
we subsequently re-sum (see supp. material), leading to

Lα=0(β) = N(β) +
N(β)PV |0〉〈0|PVN(β)

2− 〈0|PVN(β)PV |0〉
. (19)
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We note that Eq. (19) may be used for computing the EH
for single particle excitations of the vacuum and that the
re-summation also works for higher rank perturbations.

While the first term on r.h.s of Eq. (19) will yield a HV

as before, the second term on the r.h.s. is new: it is due
to the zero mode and produces a non-local contribution
to the EH. Explicitly,

〈x|LR
zero-mode(β)|y〉= 2 sinh2(πh)eih(Z(y)−Z(x))

πR(1+e
lvh
R )

, (20)

where lv =
∑
i(bi − ai) is the total length of V . Using

(3), the contribution from LR
zero-mode to the EH is:

HR
V zero-mode = −1

R

∞∫
−∞

dh 1

1+e
lvh
R

eih(Z(y)−Z(x)) (21)

=
∑
l
−π

|Z′(x)|Rδ(x− yl(x)) + p.v. πi

2lv sinh
(
πR
lv

(Z(y)−Z(x))
)

Thus, the zero mode induced part of the EH has a non-
local contribution, even for a single interval. Remark-
ably, for one interval the δ(x − y) term exactly cancels
the 1/2 shift in α (the ”chemical potential” term) in (15),
and we get that, as far as the strictly local terms are con-
cerned, HV,loc.(α = 0) = HV,loc.(α = 1/2).

The new non-local contribution to the resolvent due
to the zero mode also changes the EE in the R sector
relative to the NS. The EE SV = −TrρV ln ρV can be
expressed as [1]:

SV ≡
∫∞

1
2

dβTr[(β − 1/2)(L(β)−L(−β))− 2β
β+1/2 ]. (22)

It follows, using (8), that all Dirac fermions with α 6= 0
have the same EE (disregarding possible anomaly contri-
butions coming from the UV cutoff).

Using (22) we find the contribution to the EE from the
change in BC, δS ≡ SR − SNS :

δS = lv
2R

∫∞
0
dh tanh( lvh2R )(coth(hπ)− 1). (23)

Expanding in the ratio lv
R gives:

δS∼
∞∑
n=1

(
22n−1

)
B2nζ(2n)l2nv

2n(2πR)2n
∼ l2v

48R2
− l4v

5760R4
, (24)

where B2n are Bernoulli numbers.

Remarkably, using the replica trick, Herzog and Nish-
ioka have previously found the form (24) for δS, noting
that the series is not convergent [26]. The exact expres-
sion Eq. (23) for the entropy allows us to identify the
replica trick result of [26] as an asymptotic expansion of
the convergent integral (23). As a check we take the lim-
iting case where V is the entire circle. Plugging lv → 2πR
into (23), we find δS = log 2, as expected from the de-
generacy [32].

Finally, we show that a similar story holds for Majo-
rana fermions. Using [27] we find that the relation be-
tween the Majorana Green’s function

GM(x, y) = 〈ψ(x)ψ(y)〉 (25)

and EH is HMV = 1
2 ln((PVGMPV )−1 − 1) [33]. This re-

lation differs from the Dirac one by the important factor
of −1/2, while GM(x, y) agrees with the Dirac case in
the NS and R sector. In addition, since ψ(x)2 is a con-
stant for Majoranas, we can ignore the δ(x− y) terms in
the EH kernel. Thus we find that in the NS sector, the
Majorana EH has the local term

HNS
V,loc. =π

∫
V

dx
i

Z ′(x)
ψ(x)∂xψ(x) (26)

while the bilocal kernel (16) remains the same. In the
R sector the situation is more subtle, as the Majorana
zero mode b0 has no natural partner to create a complex
fermion. To get the minimal, non trivial Hilbert space
representation of the Clifford algebra containing b0, we
have to introduce an additional Majorana. A physical
realization of such a situation is the edge of a p + ip
superconductor, in the presence of a (π flux) vortex in
the bulk (see, e.g. [18]). Such a vortex acts to change
the BC on the edge into R type and binds a Majorana
zero energy mode to its core. Combining the Majorana
operator b′0 for the bulk-core zero-mode with our edge
zero mode b0, forms a complex/Dirac fermion operator
a0 = 1√

2 (b0 + ib′0) which switches between it’s associated

“|occupied〉” and “|empty〉” ground states. Since b20 = 1
2

by the Majorana anti-commutation relations, the Green’s
function is same as the Dirac one in (17) for any choice
of ground state. Up to the − 1

2 factor, the resulting R
sector single particle EH is equal to the Dirac one, while
the EE changes by a factor of 1

2 .
To summarize, in this letter we provide a framework

for the computation of EH in the presence of topologi-
cal defects by combining RHP and finite rank perturba-
tion theory. We present the first exact calculation of an
EH on a compact space, with and without zero modes.
We find that the Hamiltonian consists of a local term
in agreement with the CFT, as well as non-local terms
associated with the zero mode and with several entan-
gling intervals. We note that our method also applies to
non-topological zero modes (however, such modes are un-
stable, and will typically break the ground state degener-
acy). We also find an expression, Eq. (23), representing
the local entropic signature of the presence of a boundary
changing operator that reproduces boundary entropies
computed previously. Immediate possible applications
for the method are the EH and EE of excited states, and
low temperatures [28]. While we concentrated here on
the simple case of a scalar RHP, a full matrix problem
appears immediately in more involved situations, in par-
ticular, for non-relativistic fermions with a finite Fermi
sea [34].
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