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We study associating polymer gels under steady shear using Brownian dynamics simulation to
explore the interplay between the network structure, dynamics and rheology. For a wide range of
flow rates, we observe the formation of shear bands with a pronounced difference in shear rate,
concentration and structure. A striking increase in the polymer pressure in the gradient direction
with shear, along with the inherently large compressibility of the gels, is shown to be a crucial factor
in destabilizing homogeneous flow through shear-gradient concentration coupling (SCC). We find
that shear has only a modest influence on the degree of association, but induces marked spatial
heterogeneity in the network connectivity. We attribute the increase in the polymer pressure (and

polymer mobility) to this structural reorganization.

Associating polymers (APs) in dilute solution can ag-
gregate into multichain clusters when the “sticker” (the
physically associating moiety) attraction energy exceeds
the thermal energy k7. Near the overlap concentration,
sticker clusters can be bridged by polymer strands and
form an interconnected volume spanning network — a
physical gel [1-3]. Such gels are found in both natu-
ral and synthetic systems, and display a striking array of
rheological behavior, including strain stiffening [4], neg-
ative normal stresses [5], shear thickening [6, 7], shear
thinning [8], and shear banding [9-15].

Despite the ubiquity and versatility of physical gels,
a fundamental understanding of the interplay between
their microstructure, dynamics, and rheological proper-
ties remains a challenging and open problem. For in-
stance, while experiments and simulations of associative
networks (including both AP [13-15] and colloidal [16]
gels) under simple shear have observed spatial inhomo-
geneities in both shear rate and density, suggesting some
form of shear-gradient concentration coupling (SCC) [17-
20], the microscopic mechanism for the instability is un-
clear. Mean-field based models [21] of AP rheology have
largely focused on chain elasticity and have not accounted
for density inhomogeneity (e.g. chain migration) which
would require a constitutive relation describing the solute
pressure (the driving force for chain migration) as a func-
tion of shear-rate and concentration. To date, no such
relation has been explored for physical gels - largely due
to the experimental difficulty in measuring the pressure
of a single species in solution under shear [22]. Further-
more, the observation of SCC in both AP and colloidal
gels suggests that the common physics between the gels
- such as network connectivity and transient particle lo-
calization - may play a key role in driving the instability.

In this Letter, we report results from Brownian dy-
namics simulations of an AP gel under steady shear in
the nonlinear, shear-thinning, regime. The polymers we
study have multiple associating sticker groups along the
backbone, a prevalent building block of natural and syn-

thetic gels. Our study reveals that within a broad range
of applied shear rate, the gel separates into two distinct
bands with substantially different shear rate and con-
centration. However, the applicability of existing SCC
mechanisms to AP gels is unclear. While Reynolds “di-
latancy”, or the tendency for increased particle pressure
with shear, has been proposed as a driving force for shear-
induced particle migration [22, 23] and shear banding [24]
in repulsive systems such as colloidal suspensions and
glasses, the effect is marginal for dilute conditions [25].
Shear-induced turbidity in polymer [26] and wormlike
micellar surfactant [27, 28] solutions can be the result
of a coupling of elastic stress with concentration and
shear [29, 30]. However, this coupling is typically more
pronounced in high molecular weight, well-entangled so-
lutions [31].

Here, we show that AP gels exhibit a significant mi-
crostructural reorganization in response to the elastic
stresses due to shear. Crucially, we find the degree of as-
sociation only decreases slightly with shear, but the spa-
tial distribution of the network connectivity undergoes
striking changes — the initial space-spanning network is
broken into multiple smaller domains whose size is con-
trolled by the shear rate. The loose connection between
theses distinct domains significantly enhance the poly-
mer mobility and pressure in the gradient direction. We
propose that this network “dialation”, coupled with the
inherently large compressibility (low osmotic pressure) of
our gels, plays a crucial role in the observed SCC.

Our simulation system consists of 300 chains of N =
100 beads with 10 evenly spaced stickers along the back-
bone. We use a standard Kremer-Grest model to de-
scribe the chains [32]. The interaction between the non-
sticker groups and between a sticker and non-sticker
is modeled by the WCA potential [33] with diameter
oy = 1, energy ey = 1, thus setting the units of
length and energy, respectively. The Lennard-Jones time

TLy = \/mo3,/ers = 1 sets the time scale. The in-
teraction between the stickers is a shifted LJ potential



truncated at r. = 2.5 with a well depth of €55. The chain
connectivity is described with a FENE potential using
the canonical parameters (spring constant k& = 30 and
fully stretched bond length Ry = 1.5). We set a Carte-
sian coordinate such that x, z and y refer to the flow,
gradient and vorticity directions, respectively. We use
a system box size of V = L,L,L. with L, = 10.3R,,
and Ly = L, = 8.8R, where R; ~ 6.8 is the equilib-
rium radius of gyration of chains without sticker asso-
ciations (hereafter referred to as Rouse chains). We im-
pose periodic boundary conditions in the flow and vortic-
ity directions and the Lees-Edwards boundary condition
in the gradient direction [34]. The bead number den-
sity is p = 0.12, ensuring that the solution is semidilute
(p = 1.6p* where p* is the overlap concentration of the
Rouse system).

To study larger system sizes, we ignore hydrodynamic
interactions and use Langevin dynamics to evolve our
system:

mit = fp+ fo — C(F —7-Vu,), (1)

where r and f}, are, respectively, the particle position and
interparticle force, and the particle mass m is set at unity.
The Brownian force fp is taken to be a white noise with
a mean of 0 and a variance of 2kT'¢ where ( is the damp-
ing coefficient. We choose kT = 1 and defined a reduced
temperature T* = 1/egs to characterize the strength of
the association. The drag is with respect to the local
solvent velocity with Vv, = (0,0,0;0,0,0;%,0,0) [35],
where * is the applied shear rate. Simulations are per-
formed using LAMMPS [36].

We equilibrate our samples following the protocol de-
scribed in the Supplemental Material [37]. The quiescent-
state data are collected over a period of 1907g (where
Tr ~ 1565 is the Rouse time obtained from the diffusion
data of the unassociating chains [38]). Even at the low-
est T, chains diffuse their own size multiple times. We
shear the system by using two protocols: startup shear at
a constant rate for a duration of at least 2507z and sweep
with several intermediate rates for a duration of 507z per
rate. We collect data after a initial transience; the data
are averaged over at least four independent samples.

To characterize the structure of the gel, we define clus-
ters (groups of two or more associating stickers) based on
a connectivity matrix algorithm [39, 40]. Stickers within
a cutoff distance of 1.5 (capturing the attractive por-
tion of the LJ potential-well) are deemed associating and
grouped into the same cluster. We then compute struc-
tural properties such as the network bridge (a polymer
strand connecting two clusters) density np, the cluster
functionality f (the number of bridges per cluster) and
the cluster coordination number Z, (the number of other
clusters a cluster is connected to).

We first briefly survey some key quiescent-state prop-
erties. At T = 0.25, there is little sticker aggregation;
the majority of stickers remain unpaired (see inset of
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FIG. 1. Effect of T* on (a) the weight-averaged cluster size
distribution; (b) 7, D, 04.,, and II. The subscript R indi-
cates properties of our Rouse system with Dr = 6 x 1072 and
g = 8.9nkT. Gy is the gel shear modulus at T = 0.174.

Fig. 1(a)). Upon increasing the association strength to
T* = 0.20, the probability distribution of the cluster sizes
P(n.) becomes bimodal, with a second peak emerging at
larger cluster sizes. As the average cluster size increases
with increasing sticker attraction, the sticker association
lifetime 7 (the time a sticker spends in a cluster) increases
super-exponentially (roughly as 7 o exp({(n.) /T*)), in
agreement with the results of Kumar and Douglas [3].
As a result, the chains localize, as seen through the drop
in the long-time self-diffusivity D, shown in Fig. 1(b).
This “clustering transition” [3] (at T* = 0.22 4 0.02) re-
sults in the typical rheological properties associated with
the gel state. Concurrently, we find dramatic changes in
the stress-strain behavior during startup shear: at a rate
of 4 = 10~* (47 < 1), we find an initial elastic response
for the APs (04.~ = dog./dv|y—0 = shear modulus and
0z is the shear stress component of the stress tensor o)
only for T™s below this transition.

The clustering of the AP chains results in a reduction of
the osmotic pressure, II = —tro /3, (and hence, osmotic
modulus JT1/9p) of the system. AP gels are inherently
more compressible than their unassociating counterpart
(which are also relatively compressible for p ~ p*). Thus,
a salient feature of our AP gels is that while they be-
come stiffer with increasing degrees of association in the
sense that their shear modulus increases, they also be-
come softer in that they are more compressible. This
is a natural consequence of the proximity of the sol-gel
transition boundary to the spinodal boundary [1, 2].

We now turn to the steady-state behavior under shear.
Starting with an AP system in the gel state, we have ex-
amined the steady-state properties for a series of shear
rates, in the range of ¥ = 107% — 1072, All shear rates
explored are in the nonlinear shear-thinning regime with
the Péclet number Pe = WRg /D > 1. Even at the low-
est shear rate, we observe the formation of shear bands
for all T*s in the gel state. At T™ = 0.174, bands are
observed up to a shear rate of 4* = 1073, Interestingly,
the formation of the bands is accompanied by significant
concentration differences; see Fig. 2(b), where a 3-fold
difference in concentration is shown for 7% = 0.174 and
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FIG. 2. (a) Constitutive curves (obtained with a combination
of sweep and startup protocols) for gel at 7" = 0.174 and for
the Rouse solution. The insets display the AP velocity and
density profiles at various shear rates. (b) Profiles for con-
centration p, velocity © (Umax = YL:), bridging density ng
and cluster functionality f. The subscript eq denotes equilib-
rium properties. (c¢) Snapshot of banded flow (only stickers
are shown for clarity).

4 = 10~%. At this rate, the concentrated band is nearly
unsheared (with an effective shear rate an order of mag-
nitude smaller than that of the dilute phase) - a direct
consequence of both the strong concentration dependence
of the viscosity [8, 41] and the shear stress being near the
phenomenological yield stress of the band [42, 43]. The
significant difference in both density and shear between
the bands results in a substantial spatial variation in the
network structure (shown through np and f).

Upon increasing the rate from 4 = 107* to 4 =
5 x 107*, we observe that: (i) the width of the bands
remains relatively constant; (ii) the shear stress increases
(022 — oy o< 497 where oy is the material yield stress);
(iii) the two bands have exchanged mass so their den-
sities are closer (see [37] for a more quantitative mea-
sure through the structure factor); and (iv) both bands
are appreciably flowing. These observations are in con-
trast to the constitutive-instability (do,./dy < 0) mech-
anism [17] (that has been invoked to explain the recent
finding of shear bands in attractive, dense athermal (non-
Brownian) particles [44]) wherein the stress and shear
rates of the bands remain constant and the width of the
bands increases linearly with increasing shear [17, 27].
Rather, these observations are consistent with a flow in-
stability triggered by a strong coupling between shear
and concentration [20].

Few materials have been shown to exhibit SCC-
instabilities in practice [24, 28, 42]. Phenomenologically,
previous work derived the following criterion for unstable
flow, by linearization of the coupled Navier-Stokes and
diffusion equations with respect to density and velocity
fluctuations [20, 24, 45]:

F(p,4) = 2552 > 1, 2
sz,ﬁa;ﬂz,‘y

where II,. is the particle pressure in the gradient di-
rection [46] and the second subscript denotes a partial
derivative with respect to that variable, e.g. 1II..:; =
OIl,./0%. The terms II.. 5 and o, ; cause particle mi-
gration towards regions of lower shear rate and increased
shear in regions of low concentration, respectively. A
local increase in particle concentration thus reduces the
shear rate, promoting further particle migration. The
remaining terms in Eq. (2) counteract this effect by pro-
moting diffusive spreading of both particles (II.. ;) and
momentum (0. 4 ).

While shear thinning and the concentration depen-
dence of the shear stress (reflected respectively in o, 5
and 0, ; in Eq. (2)) have been previously studied [8, 41]
and drive the observed large gradient in shear-rate, the
influence of shear on the solute pressure II,, in gels re-
mains unexplored, in part due to the experimental dif-
ficulty in measuring this quantity [22]. In Fig. 3(a), we
show the normalized deviatoric pressure (I, —IL.,)/Ile,
as a function of 4 for AP gels. (For all 4, II., is still less
than the equilibrium osmotic pressure of our Rouse sys-
tem [37]). In increasing the shear rate from 4 = 10~*
to 4 = 1073, II.. exhibits an increase of nearly 2nkT
for an AP gel at T* = 0.174 in comparison to 0.22nkT
for a Rouse solution [37]. For our Rouse chains there is
only weak SCC [37], insufficient to result in unstable flow
for the examined shear rates. At the lower shear rates,
II,, ~ Il¢4 for the AP gels, and thus the gels are nearly
as compressible as in the quiescent state. This region of
shear rates where the gels are highly compressible, cou-
pled with a strong variation in II,, with 7, is precisely
where we observe a significant, sustained concentration
(and shear rate) difference.

The large increase in I, , with shear in our AP gels con-
trasts with the known dilation [47] response of compara-
bly dilute systems. Simulations of colloidal hard spheres
at volume fractions of 10% show a pressure increase of
only nkT over four decades of applied shear rate [25]. For
polymer solutions, the reduction in the chain dimension
in the gradient direction with shear increases II,, due to
the chain elasticity. For the 4 examined, we find no sig-
nificant compression of the AP chain conformation in the
gradient direction; the degree of compression is even less
than our Rouse system [37], which only results in modest
increases in II,, with 4. Therefore, while a contributing
factor, the coupling of chain elasticity to shear does not
appear to be the source of the observed SCC.
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FIG. 3. (a) (Il;; — Ileq)/Ileq as a function of 4 and T™. (b)
Influence of 4 on the cluster size distribution of the AP gel
(T = 0.174). (c) Weight-averaged DRA size distribution
(with the chains binned into groups of 20) excluding clusters
with Z. < 4. (d) Diffusivity in the gradient D.. and vor-
ticity Dy, directions in the regime of homogeneous flow. (e)
Breakup of a single space-spanning DRA at equilibrium (left)
to several smaller DRAs (indicated by different colors) during
steady shear at 4 = 1072 (right). Stickers not belonging to a
DRA are shown in grey.

What, then, is the origin of the observed dilation? To
explore this question, we focus on the structural evolution
of the gel at shear rates for which the flow is homogeneous
(% > 4*). Crucially, in this regime the density is homoge-
neous, allowing us to delineate the role of shear alone on
the structural properties of the gel. Examination of the
sticker cluster size distribution P(n.) shows a shift to-
wards smaller aggregation with increasing 4 (Fig. 3(b)).
From our quiescent-state analysis (cf. Fig. 1) we indeed
found the pressure to increase with decreasing degree of
association. However, while P(n.) appears more sensi-
tive to T* than +, raising 7" from 0.174 to 0.190 only
increases the pressure by ~ 0.6nkT (see Fig. 1(b)), an
order of magnitude less than the pressure increases un-
der shear. The failure to explain the significant increase
in IT,, with shear by introducing an effective gel temper-
ature, suggests that the gel undergoes significant struc-
tural changes unaccounted for by shifts in P(n.).

Under steady shear, one would intuitively expect that
large aggregates of connected clusters extending in the

gradient direction will be subject to large elastic stresses,
giving way to structural breakup. To quantify these
large-scale aggregates, we extend our sticker connectivity
methodology to explore the connectivity of the clusters
themselves into supramolecular aggregates. Clusters that
are connected by at least one polymer strand are deemed
to belong to the same aggregate.

In quiescence, all of the gels explored have a single
supramolecular aggregate that contains nearly all of the
chains. Interestingly, even at the largest 7, a gel at any
given moment remains a space-spanning network [37].
However, some of the connections within the network
are weak and undergo rapid breaking and reforming. The
weakly connected regions are typically bound together by
low coordination (Z..) clusters. We therefore define a dy-
namically robust aggregate (DRA) to consist of clusters
with Z. > 4 (4 being the median of Z. at equilibrium).
The size distribution of the DRAs exhibit a striking qual-
itative change with shear as shown in Fig. 3(c). At
or near equilibrium (i.e., in the linear-response regime)
with Pe < 1, a system-spanning aggregate containing
nearly all of the chains dominates the distribution, a fea-
ture that is general to APs in the gel state (the blue
and green bars). Under high shear (the red and black
bars) with 4 > 4* and Pe > 1, the distribution becomes
significantly broader, shifting towards smaller aggregate
sizes with increasing % (see Fig. 3(e) for a snapshot of
the network structure under shear). The transition be-
tween these disparate distributions is precisely the flow
regime (Pe > 1 and 4 < 4*) where we observe the SCC-
instability and the significant dilatancy.

We emphasize that the difference between these distri-
butions (e.g. see the red and green bars) is not simply
a result of reduced coordination under shear, as the av-
erage coordination of the T% = 0.174 gel at 4 = 1072
({Z.) = 3.4) is larger than that of the T* = 0.200 gel at
rest ((Z.) = 3.2). Rather, this indicates that shear in-
duces spatial heterogeneity in the network connectivity.
This shear-induced heterogeneity in the network struc-
ture enhances the chain diffusivity in the gradient (and
vorticity) direction (see Fig. 3(d)). This enhanced mo-
bility in the gradient direction, in turn, causes II,, to
increase with 4. The strong increase of II,, with 4 at
the lower shear rates, coupled with the inherently low
osmotic modulus, can destabilize homogeneous flow via
an SCC-instability (see Eq. (2)), generating shear bands
with significant dynamic and structural differences . At
the low shear end of the unstable region (¥ < 4* and
Pe > 1), the low shear stress coupled with significant
growth in density heterogeneity can result in the yield
stress of the high-density band approaching the system
shear stress, further sharpening the differences in shear
(and hence density) between the bands.

In probing the mechanism of SCC in AP gels we high-
light the crucial role of the mesoscale network connec-
tivity — rather than such global measures as the degree



of association — in the observed unique rheological be-
havior. We hope this work can inform the development
of constitutive laws for the full AP stress tensor to allow
for a more complete description of AP rheology. Network
topology should play a similarly important role in deter-
mining the mechanical (beyond elasticity) and dynami-
cal properties of AP solutions and gels at equilibrium.
We leave the theoretical elucidation of this role to future
work.
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