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Using first-principles-based simulations merging an effective Hamiltonian scheme with scaling,
symmetry, and topological arguments, we find that an overlooked Berezinskii-Kosterlitz-Thouless
(BKT) phase sustained by quasi-continuous symmetry emerges between the ferroelectric phase and
the paraelectric one of BaTiO3 ultra-thin film, being under tensile strain. Not only do these results
provide an extension of BKT physics to the field of ferroelectrics, but also unveil their non-trivial
critical behavior in low dimensions.

In two-dimensional systems with continuous symme-
try and short-range interactions, strong fluctuations pre-
vent the formation of long range order [1, 2], and rather
than a spontaneous symmetry breaking, a topological
phase transition driven by the unbinding of vortex-
antivortex pairs can occur, the so-called Berezinskii-
Kosterlitz-Thouless or BKT transition [3, 4]. It is an
infinite-order phase transition [5] and is paradigmatically
captured by the two-dimensional XY-model that has at-
tracted much interest for it astutely describes, amongst
others, the physics of superfluid helium films [6], su-
perconducting films [7–9], the Coulomb gas model [10],
Josephson junction arrays [11], and nematic liquid crys-
tals [12]. Ferroelectrics on the other hand, which consti-
tute an important class of materials, are prima facie not
expected to exhibit BKT transition, owing to their dis-
crete symmetry stemming from the cubic anisotropy of
both the lattice and the ferroelectric interactions, which
include the long-range dipolar ones. Whether the BKT
behavior would be robust against the introduction of
symmetry-breaking ferroelectric anisotropy remains un-
settled. Here we show, using Monte Carlo simulations of
a first-principles-based effective Hamiltonian scheme as
well as scaling, symmetry, and topological arguments,
that an intermediate critical BKT phase underlain by
quasi-continuous symmetry emerges between the ferro-
electric phase and the disordered paraelectric one in
tensily strained thin-film of BaTiO3, a prototypical ferro-
electric. We find that this overlooked intermediate phase
supports quasi-long-range order reflected in the algebraic
decay of the correlation function and sustained by the
existence of neutral bound pairs of vortices and antivor-
tices, in accordance with defining characteristics of a BKT
phase. Its lower and upper critical temperatures, Tc and
TBKT, are associated with the condensation and unbind-
ing of vortex-antivortex pairs, respectively. Moreover, we
also find that upon reaching TBKT, the correlation func-
tion’s critical exponent acquires a value close to the the-
oretical predictions 0.25 of the XY-model [3, 4], further
indicating that the upper transition is likely to be of the
BKT type. Our results therefore highlight the subtle, fun-
damental richness of low-dimensional ferroelectrics and

widen the realm of BKT transitions.

The situation described by the highly idealized two-
dimensional XY-model [3, 4] conventionally only applies
to two-dimensional degenerate systems with local inter-
action, and is scarcely met in experiments involving fer-
romagnetic and ferroelectric systems. In these systems,
the presence of a dipole-dipole interaction, nonlocal in
nature, significantly reduces fluctuations, thereby alter-
ing the low-temperature properties of the XY-model [13].
Indeed, it is well known that the dipolar interaction
tends to stabilize the long-range order against thermal
fluctuations, and the ground state may thus be spon-
taneously polarized [14, 15], or acquire various struc-
tures. However, while the low temperature proper-
ties substantially depend on the dipolar interaction, in
the high temperature regime this interaction is of a
lesser significance [16], and its contribution demonstrated
to be irrelevant in the treatment of the dipolar XY-
model [13, 15–18]. Furthermore, in an anisotropic vari-
ant of the two-dimensional XY-model with short-range
interactions [19, 20], it was found that the introduc-
tion of a small effective anisotropy had no effect in al-
tering the BKT transition. Hence there appears to be
a breach for investigating ferroelectrics such as barium
titanate, wherein exists a natural propensity for disor-
der, reflected for instance in the order-disorder compo-
nent of its phase transition [21, 22]. The easy displace-
ment of titanium ions from the centro-symmetric posi-
tion, occurring even in the cubic phase, along the degen-
erate rhombohedral low-symmetry directions renders its
higher-symmetry tetragonal and orthorombic ferroelec-
tric phases only partially ordered [21, 23], i.e., still sub-
ject to fluctuations. In reduced dimensionality, one may
thus inquire whether the interplay between the geomet-
rical enhancement of these intrinsic fluctuations and its
necessary alteration by anisotropy and long-range dipo-
lar interactions would allow for a subtle manifestation
of BKT physics in ferroelectric thin-films (see section
Mixed order-disorder/displacive behaviors and associated
precursor effects of the Supplemental Material [27]).

During the past decade, the physical properties of thin
ferroelectric films have been the subject of intense in-
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FIG. 1. (a) Schematic view of the considered supercell.
(b) Distribution of local dipoles components at 25 K for
30×30×3 BaTiO3 thin film under 3% tensile strain. (c) Free-
energy-like quantity vs internal energy (in Hartree) of the
30×30×3 BaTiO3 supercell under 3% tensile strain at and
around TC .

vestigation, in part due to the prospect of using such
films in microelectronics, such as nonvolatile random ac-
cess memories [24], but also due to their novel and unique
physical properties that single them out from their three-
dimensional counterparts. Recent experimental devel-
opments have brought low-dimensional ferroelectric sys-
tems within reach in laboratory, thereby rendering them
particularly interesting for exploring new phenomena,
addressing fundamental questions, and testing the re-
liability of numerical predictions. In order to gain in-
sight into their critical properties, we simulate thin films
made of BaTiO3 under open-circuit electrical boundary
conditions, grown along the [001] pseudocubic direction
(chosen to be the z axis), and Ba-O terminated. Such
films are mimicked by L×L×h supercells that are peri-
odic along the x and y axes (which lie along the [100]
and [010] pseudocubic directions, respectively), and fi-
nite along the z axis (which corresponds to the [001] di-
rection). We consider a thickness h of three unit cells
corresponding to 11.7 Å, and investigate several lateral
sizes of L = {24, 26, 28, 30} unit cells. We subject the
film to tensile strain (∼3%) mimicking the effect of a
substrate with a notably larger lattice parameter. Inter-
estingly, anisotropically stressed perovskite crystals are
known to exhibit phase diagrams with interesting com-
plexities and can display a variety of types of critical
behavior [25, 26]. The considered supercell is depicted in
Fig. 1(a). The total energy of the film, used to predict
its properties through extensive Monte Carlo simulations
over at least 14×106 sweeps, is described in the Method

section of the Supplemental Material [27].

In Fig. 1(b), we show the distribution of local dipoles
Cartesian components at 25 K within a 30×30×3 super-
cell. It is therein seen that due to strong tensile strain,
local dipole moments are confined to the film-plane, and
thus polarization can be regarded as a two-component
order parameter. Note that the macroscopic sponta-
neous polarization is numerically found to lie along a
〈110〉 pseudocubic direction for any temperature below
the Curie point of 539 K. Calculating the contribution of
the interplane coupling to the total energy of the system,
we find that it does not exceed 4%. Therefore, due to
the weak interplane coupling, dipoles belonging to differ-
ent planes are uncorrelated and the investigated ultra-
thin film geometry can be considered as effectively two-
dimensional. The assessment of the order of the ferroelec-
tric phase transition in tensily strained BaTiO3 thin film
is conducted using the Wang-Landau algorithm [43, 44]
which enables accessing the density of states from which
a free-energy-like quantity can be calculated. While for
discontinuous phase transitions, the free energy F ver-
sus the internal energy E features a double-well struc-
ture, at criticality and for continuous transitions, only
a single minimum is present. Figure 1(c) indicates that
the considered BaTiO3 system falls in the latter case in
vicinity of the Curie point, in accordance with Landau
theory [45], and with allowance for scaling analysis [20].
Invoking finite-size scaling arguments enables the deter-
mination of the extent of the intermediate critical BKT
phase that we find ranging between Tc ∼ 539 K and an
upper critical temperature, TBKT ∼ 545 K (see section
Scaling analysis and Intermediate critical phase of the
Supplemental Material [27]).

One of the features mirroring the uniqueness of the
BKT phase lies in the quasi-long range order it can sus-
tain. This quasi-long range ordered phase is character-
ized by the slow algebraic decay of the order parameter
correlation function and its continuously varying critical
exponent η [4, 20]. This algebraic behavior is similar to
that of an isolated critical point while not being confined
to a single temperature, and the BKT phase can thus be
regarded as a phase consisting of critical points, distinct
from the high-temperature disordered phase with rapid
exponential decay of the correlation function, yet weaker
than a truly long-range ordered one. From BKT the-
ory [4], it is expected that quasi-long range order onsets
at TBKT and that it is marked by η (TBKT) = 0.25. We
therefore inquire into the behavior of the in-plane two-
point disconnected correlation function [46] in the con-
sidered BaTiO3 system. Results indicate that within the
identified intermediate phase, the correlation function is
best fitted into a power-law fall-off (inset of Fig. 2(a)),
while for higher temperatures, it is the exponential form
that best captures the rapid decay of the correlation,
as is typical of a disordered, paraelectric phase (inset of
Fig. 2(b)). Extracting the values of η and ξ from power-
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FIG. 2. Evolution with temperature, for L = 30, of the in-
plane two-point correlation function exponent η (a) and the
correlation length ξ (b) as determined from fit to spatial cor-
relation with power and exponential laws, exemplified by the
insets of (a) and (b), respectively. Red line in (b) corresponds
to an exponential fit to the data points.

law and exponential fits to the disconnected correlation
function, we obtain an estimate of their temperature de-
pendence. It is seen in Fig. 2(a), that the temperature at
which the predicted 0.25 value of the critical exponent η
of the correlation function is reached falls in close vicinity
of the previously estimated TBKT ∼ 545 K, in agreement
with the BKT picture [4] (see Scaling analysis and Inter-
mediate critical phase section of the Supplemental Mate-
rials [27]). Moreover, as shown in Fig. 2(b), the expected
exponential divergence (ν =∞) of the correlation length
ξ upon reaching BKT from above [4] is indeed observed
in our simulations.

The above gathered results entail the existence of
an intermediate critical BKT phase in tensily strained
BaTiO3 thin film, separating the ferroelectric phase from
the disordered one, and characterized by quasi-long-
range order and the absence of symmetry breakdown.
The three-phase structure exhibited by the considered
dipolar system can be further qualitatively evidenced
through the consideration of dipolar fluctuations, whose
role is exacerbated by the reduced dimensionality. Fig-

ure 3 shows the symmetrized probability distribution of
local dipole moments [47] and points to three phases
with distinct topologies. Upon decreasing temperature,

FIG. 3. Temperature evolution of the symmetrized proba-
bility distribution of the in-plane components of local dipole
moments in a L = 30 supercell.

the system transits from a uniform distribution around
zero, characteristic of a disordered state at high temper-
atures (Fig. 3(c)), to four isolated spots, indicative of a
fourfold-degenerate ground state (Fig. 3(a)), through an
approximate continuous rotational symmetry reflected in
a nearly annular distribution at intermediate tempera-
tures (Fig. 3(b)). In this intermediate regime, dipoles
acquire non-zero magnitude while retaining their fluctu-
ations, yielding a distribution with ring topology whose
slight distortion reflects the anisotropy of the underly-
ing square lattice. Hence, while the critical behavior is
usually determined by the range of interactions, spatial
dimensionality and the inherent symmetry of the Hamil-
tonian, in some cases such as the one considered here,
at criticality, a higher, quasi-continuous symmetry of the
discrete order parameter can arise, rendering the associ-
ated critical behavior richer than expected [48, 49]. In-
deed, while the fourfold anisotropy is relatively irrele-
vant in the intermediate critical BKT phase where the
two-dimensional XY-model properties are recovered and
an approximate continuous symmetry is observed, it re-
asserts itself suppressing fluctuations and restoring the
fourfold rotational symmetry at low temperatures. It is
primarily interesting to note that this critical phase with
emergent continuous symmetry is reminiscent of the in-
termediate BKT phase between the low-temperature or-
dered phase and the high-temperature disordered phase
of the square planar rotator model with small fourfold
symmetry-breaking field [50] (see section Interplay be-
tween isotropy and anisotropy of the Supplemental Ma-
terial [27]).

A salient feature of the BKT transition is its intri-
cate relation with topological excitations, namely vor-
tices and antivortices point defects [4]. The seminal
heuristic argument of Kosterlitz and Thouless points to
a subtle logarithmic competition between energy and en-
tropy of defects, the balance point of which, marked
by TBKT, insulates two different modes of their behav-
ior [4]. Below this transition temperature, lone defects
are inhibited due to their logarithmically divergent en-
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ergy with the system size, and hence vortices or antivor-
tices are expected not to occur in isolated form, but
rather within tightly bound vortex-antivortex pairs as
local excitations, due to the finite pair energy scaling
with its radius rather than with the system size. These
bound pairs appear topologically neutral from a large-
scale perspective, as they confine and mutually cancel
their orientational disturbance, thereby allowing for al-
gebraic decay of correlations and quasi-long-range order.
As temperature is raised, the number of pairs increases
and larger ones start forming, within which the inter-
action of defects is subject to screening by other smaller
pairs that lie in between. These loosened pairs effectively
unbind at TBKT, whereupon entropy balances the inter-
action and independent free defects occur, causing cor-
relations to decay exponentially in the high-temperature
phase. The relevance of defects in establishing the BKT
transition is hence crucial, and their very existence an-
chors in the non-triviality of the fundamental homo-
topy group (π1) of the underlying circle topology (S1)
of the XY-model symmetry group, π1(S1) = Z, where
Z is the group of integers. On a lattice, such defects
can thus be identified through a topological invariant
or discrete winding number k ∈ Z [51, 52], measuring
the accumulated angular variation of vectors upon cir-
culating with a given orientation along elementary pla-
quettes composing the square lattice. Whenever vectors
process by +2π (−2π), the plaquette encloses a vortex
(antivortex) with k = +1 (k = −1). Notably, the topol-
ogy of the emergent quasi-continuous symmetry exhib-
ited by tensily strained BaTiO3 thin film at intermedi-
ate temperatures (Fig. 3(b)) is topologically equivalent,
or homeomorphic, to the circle S1 topology underlying
the O(2) symmetry group of the XY-model, hence en-
dowing defects with topological protection against sim-
ple perturbations in the considered system [53]. We
thus undertake the examination of the behavior of de-
fects by characterizing the topological properties of the
two-dimensional cross-sectional polarization field. We
find that while such defects are absent deep in the fer-
roelectric phase, they condensate in close vicinity of Tc

in the form of strongly coupled vortex-antivortex pairs
(Fig. 4(a1)), marking the breakdown of long-range or-
der, and the accommodation of quasi-long-range order-
ing instead. Indeed, winding numbers are additive, and
the two oppositely charged defects within pairs compen-
sate each other, such that the resulting texture can be
immersed in a uniform background, yielding a power-law
decay of dipolar correlations (inset of Fig. 2(a)). We note
that while the existence of an odd number of vortices or
antivortices is prohibited by the condition of zero overall
vorticity at stake in the considered system with periodic
boundary conditions, the generation by thermal fluctua-
tions of such pairs is both allowed topologically and fa-
vored energetically by short-range interactions between
first and second nearest neighbors. The mean vortex-
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FIG. 4. (a) Spatial distribution of vortices (blue points) and
antivortices (red points) overlaid on cross-sectional dipolar
configuration for L = 30 at (a1) 540 K (intermediate BKT
phase), (a2) 545 K (∼ TBKT), and (a3) 550 K (paraelectric
phase). (b) Evolution of the average vortex-antivortex pair
radius r with reduced temperature T/TBKT. Dashed curve is
a guide for the eye. (c) Evolution of the logarithm of the aver-
age vortex-antivortex pairs density ρ with the inverse reduced
temperature. Straight line is linear fit to low-temperature
data.

antivortex separation within a pair, or pair radius r, is
found not to exceed around one lattice spacing and is
significantly smaller than the mean separation between
pairs (Fig. 4(a1)). As TBKT is approached from below,
the number of pairs increases, and loosely bound pairs
start occurring (Fig. 4(a2)). Ensuingly, an unbinding on-
sets just above TBKT, whereupon pairs with radius com-
parable to the mean separation between pairs begin to
appear (Fig. 4(a3)). This preliminary insight signals pro-
liferation and unbinding of pairs as T increases through
TBKT, and is in qualitative agreement with the BKT pic-
ture [4, 54]. To better support these observations, we
examine the defect configurations and compute the evo-
lution with temperature of the average vortex-antivortex
pair radius r (Fig. 4(b)). We find that r grows rapidly
as T increases, which confirms the unbinding of vortex-
antivortex pairs. At higher temperature, the curve de-
creases due to defects proliferation which rises the prob-
ability of a defect to having a neighbouring antidefect.
We next inquire into the temperature dependence of the
density ρ of pairs, and find that bound vortex-antivortex
pairs are concomitant with low defect concentration. In
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the corresponding temperature regime, the density of
pairs is expected to be governed by a Boltzmann factor
involving the chemical potential 2µ of a vortex-antivortex
pair, ρ ∼ exp(−2µ/(T/TBKT)). Figure 4(c) shows ln ρ
versus the inverse reduced temperature. As can be seen
for low temperatures, ln ρ is proportional to TBKT/T with
the slope being −10.49± 0.01, which is remarkably close
to the value of 2µ = 10.2 that is expected for creating
a vortex-antivortex pair of defects separated by unit dis-
tance in the continuum limit [4] in the BKT phase. The
agreement between our obtained chemical potential in
the dilute limit (Fig. 4(c)), which conditions the proba-
bility of appearance of a vortex-antivortex pair, and that
predicted for the two-dimensional XY-model can be ap-
prehended through the fact that the contribution of the
dipolar interaction, despite its seeming potential impor-
tance, has been analytically demonstrated to be irrele-
vant to the nature of the BKT transition within a dipo-
lar variant of the XY-model [16–18], in which the char-
acteristic logarithmic interaction of defects within a pair
was shown to be restored. While large chemical poten-
tial supports a dilute phase of defect pairs, one can see
that for higher temperatures the slope significantly de-
creases, indicating smaller chemical potential, as it be-
comes thermally easier to create very many pairs (the
presence of which decreases the free energy by increasing
the entropy) leading to increased screening and effective
dissociation upon reaching the paraelectric phase.

In summary, our numerical simulations provide evi-
dence for an additional intermediate BKT phase in tensily
strained BaTiO3 thin film. We find that, due to an ef-
fectively reduced spatial dimensionality and a lessened
number of dominantly contributing polarization compo-
nents, the transitional region of tensily strained BaTiO3

is enhanced into a critical phase exhibiting defining BKT
features. In contrast with short range isotropic systems,
the anisotropic dipolar interactions ineluctably drive fer-
roelectric long-range order, thereby endowing the system
with a three-phase structure: a truly ordered ferroelectric
phase, a quasi-long-range ordered phase substantiated by
an algebraic decay of spatial correlations and supported
by an emergent continuous symmetry that allows for sta-
ble topological excitations to condense in the distortion-
confining form of vortex-antivortex bound pairs, and a
disordered, paraelectric one, with exponentially falling
correlations.
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