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Motivated by recent experiments with proximitized nanowires, we study a mesoscopic s-wave
superconductor connected via point contacts to normal-state leads. We demonstrate that at energies
below the charging energy the system is described by the two-channel Kondo model, which can be
brought to the quantum critical regime by varying the gate potential and conductances of the
contacts.

The prediction of and search for Majorana physics
in hybrid semiconductor-superconductor structures [1]
touched off a rapid progress in the technology of such
devices [2–19]. In particular, the pairing gap induced in
semiconductor wires by the proximity effect is already
comparable with that in a bulk superconductor.

When a proximitized wire with spin-orbit coupling is
placed in a sufficiently strong magnetic field, the na-
ture of the induced superconducting pairing changes from
s-wave to p-wave [20, 21], leading to the appearance of
Majorana zero modes [22]. These modes make possible
resonant electron transport through a proximitized seg-
ment contacted by normal-state leads [23–25]. Both the
width and the height of the resonant Coulomb block-
ade peaks in the dependence of the conductance on the
gate potential saturate at low temperature [24–26]. The
height of the peaks in this limit is controlled by the asym-
metry between the contacts, reaching e2/h in a symmetric
device [24, 25]. For this behavior to be viewed as a sig-
nature of the presence of Majorana modes, it must differ
from that in the regimes when the Coulomb-blockaded
segment is either in the normal state or in the conven-
tional s-wave superconducting state.

In this paper we show that the behavior of the conduc-
tance in the s-wave regime is not only very different from
that described above, but is interesting in its own right.
Indeed, it turns out that tunable proximitized devices
are ideally suited for the observation of the two-channel
Kondo effect, with two almost degenerate charge states
of the proximitized segment playing the part of the two
states of spin-1/2 impurity. The shape of the Coulomb
blockade peaks depends strongly on the asymmetry be-
tween the contacts. In a fine-tuned symmetric device
the width of the peaks scales at low temperature as

√
T ,

whereas their height approaches 2e2/h. This behavior is
a manifestation of the quantum criticality inherent in the
two-channel Kondo model. On the contrary, in a generic
device with asymmetric contacts, the conductance is pro-
portional to T 2 for any gate potential, and vanishes at
zero temperature.

We model the system by the Hamiltonian

H =H0 +HS +HC +HT . (1)

The first term here describes electrons in the leads. It

reads H0 = ∑αkσ ξkc
†
αkσcαkσ, where α = R,L labels the

right/left lead and σ =↑, ↓ labels the spin. (We will also
use the notation σ = ±1 for the spin indices.) In order to
study transport at low temperatures, it is adequate to lin-
earize the single-particle spectra as ξk = vk. Here v is the
Fermi velocity and k are the momenta measured from the
respective Fermi levels. (We work in units where h̵ = 1.)
The second term in Eq. (1), HS , describes an isolated
superconductor. In the conventional BCS framework, it
is given by [29]

HS =∑
nσ

√
∆2 + ε2n γ†

nσγnσ, (2)

where ∆ is the superconducting gap, γnσ is the fermionic
quasiparticle operator and εn are single-particle energies
characterized by the mean level spacing δ ≪ ∆. The
third term in Eq. (1) originates in electrostatics and is
given by

HC = EC(N̂ −Ng)2, (3)

where EC ≪ ∆ is the charging energy, Ng is the dimen-

sionless gate potential, and N̂ is an operator with integer
eigenvalues representing the number of electrons in the
superconductor. Finally, HT describes the tunneling,

HT = ∑
Nαnσ

tαnc
†
ασ(0)dnσ ∣N − 1⟩⟨N ∣ +H.c.. (4)

Here tαn is the tunneling amplitude, the opera-
tor c†ασ(0) = L−1/2∑kc

†
αkσ creates an electron with

spin σ at point contact α (L is the size of
the system that will be taken to infinity in the
thermodynamic limit), dnσ = unγnσ − σvnγ†

n,−σ, where
the BCS coherence factors un and vn satisfy [29]

u2n = 1 − v2n = 1
2
(1 − εn/

√
∆2 + ε2n ), and ∣N⟩ is eigenvector

of N̂ with eigenvalue N .
At low temperatures T ≪ ∆, the superconductor favors

states with even number of electrons N . Taking into
account virtual transitions to states with odd N [29, 30]
in the second order of perturbation theory, we obtain
H =H0 +HC +HA, where

HA = ∑
oddN

∑
αα′

Jαα′ cα↑(0)cα′↓(0)∣N + 1⟩⟨N − 1∣+H.c. (5)
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describes Andreev processes [31] in which electrons tun-
nel into and out of the superconductor in pairs.

In the leading order in EC/∆ ≪ 1 the two-particle
tunneling amplitudes in Eq. (5) are given by [30, 32]

Jαα′ =∑
n

∆

∆2 + ε2n
t∗αnt

∗

α′n , (6)

and are subject to mesoscopic fluctuations. Provided
that the motion of electrons inside the superconduc-
tor is chaotic, such fluctuations can be analyzed us-
ing the standard Random Matrix Theory-based pre-
scriptions (see, e.g., [33, 34] and references therein).
In this approach, the single-particle tunneling ampli-
tudes tαn are statistically independent of each other
and of the single-particle energies εn. Accordingly, the
sum in Eq. (6) consists of a large (of order ∆/δ ≫ 1)
number of statistically independent random contribu-
tions. The Central Limit theorem then suggests that
the distribution of Jαα′ is Gaussian. Using ⟪tαn⟫ = 0
and ⟪tαmtβn⟫ = ⟪tαmt∗βn⟫ = (2π)−1δvgαδαβδmn [33, 34],
where the double angular brackets denote averaging over
the mesoscopic fluctuations and gα is the dimensionless
(in units of 2e2/h) conductance of contact α, and replac-
ing the summation over n by the integration, we find

⟪Jαα′⟫ = Jαδαα′ , Jα = gαv

2
(7)

and

⟪JααJα′α′⟫ − JαJα′ = 1

2π

δ

∆
(1 + δαα′)JαJα′ , (8a)

⟪J2
αα′⟫α≠α′ = 1

2π

δ

∆
JαJα′ . (8b)

These equations show both the off-diagonal elements of
the 2×2 matrix Jαα′ and the fluctuations of the diagonal
elements are parametrically suppressed at δ/∆ ≪ 1, and
can be neglected. Note that δ/∆ ≪ 1 is the limit when
the BCS description of the superconductor employed in
the above derivation is accurate [35].

The charge states ∣N ± 1⟩ in Eq. (5) are discriminated
by electrostatics, see Eq. (3). For almost all values of
the gate potential Ng, the ground state of HC is non-
degenerate. Exceptions are narrow intervals ofNg around
odd integers N∗

g , where states with N = N∗

g ± 1 electrons
have almost identical electrostatic energies. Accordingly,
at T ≪ EC and ∣Ng −N∗

g ∣ ≪ 1 the Hamiltonian can be
simplified further by discarding all but the two almost
degenerate charge states ∣N∗

g ± 1⟩, which can be viewed
as two eigenstates of spin-1/2 operator S, ∣N∗

g + 1⟩→ ∣↑⟩
and ∣N∗

g − 1⟩→ ∣↓⟩. Upon performing the particle-hole

transformation [32] cαk↓ → c†α,−k,↓ and taking into account

Eq. (7), we arrive at the Hamiltonian of the anisotropic
two-channel Kondo model [36–40]

H =H0 +BSz +∑
α

Jα[s+α(0)S− + s−α(0)S+], (9)

where s+α(0) = c†α↑(0)cα↓(0), s−α(0) = [s+α(0)]†, and
B = 4Ec(N∗

g −Ng). (In writing Eq. (9), we changed the
sign of the exchange term with the help of the unitary
transformation eiπS

z

He−iπS
z

.)
Importantly, the exchange constants Jα in Eq. (9)

are controlled independently by the conductances of the
point contacts [see Eq. (7)], and, therefore, can be easily
tuned to be equal. Similarly, the “magnetic field” B de-
scribes departures from the charge degeneracy and can
be tuned to zero by changing the gate potential Ng. Such
remarkable tunability allows one to fully explore various
parameter regimes of the two-channel Kondo model (9).

At B = 0 and JL = JR [these equations define a line
in the three-dimensional parameter space (B,JL, JR)]
observable quantities exhibit a non-Fermi liquid behav-
ior [36–40], whereas anywhere away from this critical line
they behave at lowest temperatures as prescribed by the
Fermi-liquid theory. On crossing the critical line at T = 0,
the system undergoes a quantum phase transition be-
tween two Fermi-liquid states that are adiabatically con-
nected to each other by going around the critical line. At
the transition, observable quantities exhibit singularities.
For example, at JL = JR the susceptibility d⟨Sz⟩/dB, as-
sociated with the correlation function ⟨Sz(t)Sz(0)⟩, di-
verges logarithmically [38] at B → 0.

Our observable of choice, the linear conductance, is
given by the Kubo formula [41]

G

G0
= lim
ω→0

π

ω
∫

∞

0
dt eiωt ⟨[I(t),I(0)]⟩ (10)

with G0 = 2e2/h and with the particle current operator
given by

I = d

dt

1

2
(NR −NL), (11)

where Nα is the total number of electrons in the lead α.
In terms of the Kondo model (9), it reads

Nα = Nα↑ −Nα↓, Nασ =∑
kσ

c†αk↑cαk↑. (12)

With time dependence governed by the Hamiltonian (9),
we find I = i[JLs+L(0) − JRs+R(0)]S− +H.c.. Accordingly,
the conductance (10) provides a direct access to the cor-
relation functions of the type ⟨S+(t)s−L(t)S−(0)s+R(0)⟩.

We discuss first the temperature dependence of
the conductance when the parameters of the Kondo
model (9) are tuned precisely to the critical line. In other
words, we consider exact charge degeneracy (B = 0), and
equal conductances of the contacts (JL = JR = J = gv/2).
Writing the rate equations result [24, 30] in terms of ex-
change constants in Eq. (9), we find G/G0 = 2π2(νJ)2
for the conductance in the lowest order in νJ ≪ 1 (here
ν = (2πv)−1 is the density of states per length). The
Kondo effect can be accounted for in the rate equa-
tions formalism [42] by replacing J with its renormalized
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value reached when the bandwidth D of conduction elec-
trons in Eq. (9) is reduced from its initial value D ∼ EC
to D ∼ T . In the scaling limit [43] TK ≪ T ≪ EC we have
νJ(D) = [2 ln(D/TK)]−1, and the conductance assumes
the form

G

G0
= π2

2ln2(T /TK)
, (13)

where TK ∼ EC e−π
2
/g is the Kondo temperature [43, 44].

The temperature dependence of the conductance in the
strong-coupling regime (T ≪ TK) can be found using the
technique of Ref. [45], which yields [43]

G

G0
= 1 − (πT

TK
)
2

. (14)

Alternatively, Eq. (14) can be obtained by mapping [46,
47] our problem onto that of a resonant tunneling of a
Luttinger liquid with the Luttinger parameter K = 1/2
through a double-barrier structure [48]. In the lat-
ter model, correction to the conductance scales as [48]
G(0) − G(T ) ∝ T 2(4K−1), in agreement with Eq. (14).
Note that G(T ) we found differs from that in the two-
channel Kondo device proposed in [49] and realized ex-
perimentally in [50]. The difference arises because G in
the device of Refs. [49, 50] is proportional to the single-
particle t-matrix [51], hence [39, 52] G(0) −G(T )∝

√
T ,

whereas in our case G is given by the two-particle corre-
lation function.

According to Eq. (14), the conductance at zero temper-
ature is exactly half of the conductance of an ideal single-
channel interface between a normal conductor and a su-
perconductor [53] 4e2/h. Such halving of the ideal con-
ductance is one of the manifestations of quantum critical-
ity. This property is reminiscent of the predicted [42, 54]
and observed [55] behavior of inelastic cotunneling of
spin-polarized electrons through a Coulomb-blockaded
normal-state island with vanishing single-particle level
spacing. Indeed, in this case the zero-temperature con-
ductance at the charge-degeneracy point is e2/2h, which
again is exactly half of the ideal conductance of a single-
channel point contact e2/h.

Finite zero-temperature conductance in our model is
the hallmark of the non-Fermi-liquid behavior. Any de-
parture from the critical line restores the Fermi liquid:
at finite B, JL − JR, or both, the conductance scales as
G ∝ T 2 at lowest temperatures instead of Eq. (14). The
origin of this behavior is easy to understand in the limit
of large B ≫ TK . In this limit, the entire dependence
G(T ) can be found by perturbation theory. At T ≪ B
transitions ∣↓⟩→ ∣↑⟩ are virtual, and their role reduces to
merely generating a residual local exchange interaction
between conduction electrons [36, 56]. The contribution
giving rise to non-zero current reads

Hint = V [s+R(0)s−L(0) + s−R(0)s+L(0)]. (15)

In the second order of perturbation theory, the inter-
action constant in Eq. (15) is given by V = −J2/B.
With J here replaced with its renormalized value
at D ∼ B, Eq. (15) is applicable at all B in the
range TK≪ B ≪ EC . The particle current (11)-(12)
evaluated with the Hamiltonian H =H0 +Hint reads
I = 2iV [(s+L(0)s−R(0) − s+R(0)s−L(0)]. The Kubo for-
mula (10) then yields G/G0 = [(2π)4/3]ν4V 2T 2, leading
to the asymptote

G

G0
= π4T 2

3B2 ln4(B/TK)
(16)

at T ≪ B. On the other hand, in the opposite limit
T ≫ B the conductance is still described by Eq. (13).
Hence, the dependence G(T ) is non-monotonic, with a
maximum at T ∼ B.

The channel asymmetry also leads to a non-monotonic
temperature dependence of the conductance. If the con-
tact conductances are small but very different, the con-
ductance reaches its maximum in the regime accessible
by perturbative renormalization. To be definite, we con-
sider the case when JL ≪ JR. Evaluating the conduc-
tance with the help of the rate equations [24, 30], we
find G/G0 = 8π2(νJL)2. When considering perturbative
renormalization of JL [36, 37, 43, 44], it is important
to take into account, in addition to the usual second-
order term J2

L, the dominant next-order contribution.
This contribution is proportional to JLJ

2
R and is nega-

tive, leading to a non-monotonic dependence JL(D) [43].
In the scaling limit, it is convenient to express the results
in terms of TαK ∼ EC exp(−π2/gα) (TαK is the Kondo tem-
perature in the limit when the conductance of contact α
is finite, whereas the second contact is completely shut
off). The conductance reaches its maximum

( G
G0

)
max

= 2π2

ln2(TRK/TLK)
(17)

at T ∼ TRK exp
√

ln(TRK/TLK) [43], which belongs to the

perturbative domain (T ≫ TRK ∼ TK) provided that
∣gR − gL∣ ≫ g2R. The dependence on temperature near
the maximum is weak, see the left panel in Fig. 1, and
G(T ) crosses over from Eq. (17) to the Fermi-liquid low-
temperature asymptote G∝ T 2 at T ∼ TRK .

In the opposite limit of small deviations from the crit-
ical line in the parameter space (B,JL, JR), the system
upon lowering the temperature first enters the strong-
coupling non-Fermi-liquid regime [see Eq. (14)], and then
crosses over at T ∼ TF ≪ TK to the limiting Fermi-liquid
behavior. The crossover is described by [42, 54]

G

G0
= f (πT

TF
) , f(x) = 1 − 1

2x
Ψ(1 + x

2x
) , (18)

where Ψ(z) = d2 ln Γ(z)/dz2 is the trigamma func-
tion. The universal function f(x) interpolates between
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FIG. 1: Left panel: non-monotonic temperature dependence
of the conductance at the Coulomb-blockade peak for asym-
metric contacts with gL = 0.2 and gR = 0.3, corresponding
to TL

K/TR
K ∼ 10−8. Right panel: temperature dependence of

the conductance in the universal regime T ∼ TF ≪ TK , see
Eq. (18).

f(x) = 1 − π2/4x at x ≫ 1 and f(x) = x2 at x ≪ 1. The
latter limit corresponds to the Fermi-liquid regime. The
dependence G(T ) given by (18) is plotted in the right
panel in Fig. 1.

The characteristic crossover scale TF in Eq. (18) is set
by the distance of the system parameters to the criti-
cal line. This scale can be estimated by scaling anal-
ysis. Near the critical line, both the “magnetic field”
(i.e., distance to the charge degeneracy point) and the
channel asymmetry are relevant perturbations with scal-
ing dimension 1/2 [57–60]. Therefore, as the band-
width is lowered, the corresponding dimensionless cou-
pling constants grow at D ≲ TK as (TK/D)1/2, becom-
ing of order unity at D ∼ TF . Taking into account
that B at D ∼ TK is of order of its bare value [43],
we obtain [37, 59] TF ∼ B2/TK ∼ (E 2

C /TK)(Ng −N∗

g)2 for
channel-symmetric setup [61]. Accordingly, the width of
the Coulomb blockade peak in the dependence G(Ng)
scales as

√
T with temperature. The above estimate

of TF and Eq. (18) are applicable as long as TF ≪ TK ,
i.e., close to the charge degeneracy point. Further away
from this point, the conductance is described by Eqs. (13)
and (16) at T ≫ B and T ≪ B, respectively.

Interestingly, Eq. (18) also describes conductance in a
device with almost open contacts, i.e., in the limit when
1 − gα ≪ 1 and the tunneling Hamiltonian description
of the contacts [see Eq. (4)] is inapplicable. In fact, it
was originally derived [42] in this limit in the context
of closely related problem of inelastic cotunneling. For
almost open contacts the crossover scale TF also scales
as (Ng − N∗

g)2 in the vicinity of the charge degeneracy
point [42], hence the width of the Coulomb blockade
peak is again proportional to

√
T . However, in this limit

the number of electrons in the Coulomb-blockaded re-
gion is not quantized. Strong charge fluctuations render
the reduction to the Kondo model [cf. Eq. (9)] impos-
sible. As a result, the temperature dependence of the
conductance is characterized by only two energy scales,
EC and TF [42]. Due to the absence of the intermediate
scale TK , Eqs. (13)-(17) are not applicable in this limit.

In conclusion, conduction through a Coulomb-
blockaded mesoscopic s-wave superconductor is facili-
tated by Andreev processes. In the vicinity of the
charge degeneracy points these processes can be mapped
onto exchange terms in the effective two-channel Kondo
model. Unlike in the case of inelastic cotunneling through
a normal-state island [42, 44, 54, 55], the mapping does
not rely on the smallness of the single-particle level spac-
ing in the Coulomb-blockaded region in comparison with
temperature. The critical two-channel-Kondo regime
corresponds to the limit when conductances of the point
contacts connecting the superconductor to the normal-
state leads are equal. In such symmetric setup conduc-
tance at the Coulomb blockade peak increases with the
decrease of temperature, reaching 2e2/h at zero temper-
ature, whereas the width of the peak decreases as

√
T .

Our theory is valid provided that the induced su-
perconducting gap ∆ is large compared with both the
charging energy EC and the single-particle level spac-
ing δ. These parameters are set by the device ge-
ometry and properties of the materials used. Experi-
ments [14] on the already existing 1.5µm-long aluminum-
coated InAs wires yielded ∆ ≈ 0.2meV and EC ≈ 20µeV.
Estimating δ with the help of the results of Ref. [24],
we find δ ∼ 3µeV. Accordingly, parameters of these
wires fall well within the desired range. Estimated
values of these parameters for the prospective de-
vices [62] of the type studied in Ref. [55] with nor-
mal metal NiGeAu replaced by superconducting In read
∆ ∼ 1meV, EC ∼ 20µeV, and δ ∼ 10−5 µeV, thus promis-
ing much larger value of the ratio ∆/δ. Unlike ∆, EC ,
and δ, the Kondo temperature TK and the crossover
scale TF are tunable by varying conductances of the con-
tacts and the gate potential. The tunability makes it
possible to explore experimentally all the regimes dis-
cussed above and crossovers between them on a single
device.
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erkom, M. Quintero-Pérez, M. C. Cassidy, A. Geresdi, S.
Koelling, D. Car, S. R. Plissard, E. P. A. M. Bakkers,
and L. P. Kouwenhoven, Nano Lett. 17, 2690 (2017)

[20] R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys. Rev.
Lett. 105, 077001 (2010).

[21] Y. Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett.
105, 177002 (2010).

[22] N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).
[23] L. Fu, Phys. Rev. Lett. 104, 056402 (2010).

[24] B. van Heck, R. M. Lutchyn, and L. I. Glazman, Phys.
Rev. B 93, 235431 (2016).

[25] R. M. Lutchyn and L. I. Glazman, arXiv:1701.00184.
[26] Note that the recently developed field-theoretical [27]

and numerical [28] models predict that more sophisti-
cated multi-terminal devices carrying multiple Majorana
modes have highly non-trivial properties, drastically dif-
ferent from two-terminal devices.

[27] B. Béri and N. R. Cooper, Phys. Rev. Lett. 109, 156803
(2012); A. M. Tsvelik, Phys. Rev. Lett. 110, 147202
(2013); A. Altland and R. Egger, Phys. Rev. Lett. 110,
196401 (2013); B. Béri, Phys. Rev. Lett. 110, 216803
(2013).

[28] M. Papaj, Z. Zhu, and L. Fu, “Trans-
port signatures of topology protected
quantum criticality in Majorana islands”,
http://meetings.aps.org/Meeting/MAR17/Session/S45.6

[29] M. Tinkham, Introduction to Superconductivity (Dover,
Mineola, 2004); P. G. de Gennes, Superconductivity of
Metals and Alloys (Westview Press, Boulder, 1999).

[30] F. W. J. Hekking, L. I. Glazman, K. A. Matveev, and R.
I. Shekhter, Phys. Rev. Lett. 70, 4138 (1993).

[31] A. F. Andreev, Sov. Phys. JETP 19, 1228 (1964); Sov.
Phys. JETP 24, 1019 (1967).

[32] I. Garate, Phys. Rev. B 84, 085121 (2011).
[33] I. L. Aleiner, P. W. Brouwer, and L. I. Glazman, Phys.

Rep. 358, 309 (2002);
[34] M. Pustilnik and L. I. Glazman, J. Phys. Condens. Mat-

ter 16, 513R (2004); L. I. Glazman and M. Pustilnik,
in Nanophysics: Coherence and Transport, edited by H.
Bouchiat et al. (Elsevier, Amsterdam, 2005).

[35] J. von Delft and D. C. Ralph, Phys. Rep. 345, 61 (2001).
[36] P. Nozières and A. Blandin, J. Phys. (France) 41, 193

(1980).
[37] D. L. Cox and A. Zawadowski, Adv. Phys. 47, 599 (1998).
[38] P. Schlottmann and P. D. Sacramento, Adv. Phys. 42,

641 (1993).
[39] I. Affleck, Acta Phys. Pol. B 26, 1869 (1995).
[40] A. O. Gogolin, A. A. Nersesyan, and A. M. Tsvelik,

Bosonization and Strongly Correlated Systems (Cam-
bridge University Press, Cambridge, 1998).

[41] G. D. Mahan, Many-Particle Physics, 3d ed. (Plenum,
New York, 2000).

[42] A. Furusaki and K. A. Matveev, Phys. Rev. Lett. 75, 709
(1995); Phys. Rev. B 52, 16676 (1995).

[43] See Supplemental Material for the discussion of the renor-
malization group flow in the weak coupling regime and
details of the derivation of Eq. (14).

[44] K. A. Matveev, Sov. Phys. JETP 72, 892 (1991).
[45] V. J. Emery and S. Kivelson, Phys. Rev. B 46, 10812

(1992).
[46] S. Eggert and I. Affleck, Phys. Rev. B 46, 10866 (1992).
[47] H. Yi and C. L. Kane, Phys. Rev. B 57, R5579 (1998);

H. Yi, Phys. Rev. B 65, 195101 (2002).
[48] C. L. Kane and M. P. A. Fisher, Phys. Rev. B 46, 7268

(1992); Phys. Rev. B 46, 15233 (1992).
[49] Y. Oreg and D. Goldhaber-Gordon, Phys. Rev. Lett. 90,

136602 (2003).
[50] R. M. Potok, I. G. Rau, H. Shtrikman, Y. Oreg, and

D. Goldhaber-Gordon, Nature 446, 167 (2007); A. J.
Keller, L. Peeters, C. P. Moca, I. Weymann, D. Mahalu,
V. Umansky, G. Zaránd, and D. Goldhaber-Gordon, Na-
ture 526, 237 (2015).

[51] M. Pustilnik, L. Borda, L. I. Glazman, and J. von Delft,



6

Phys. Rev. B 69, 115316 (2004).
[52] I. Affleck and A. W. W. Ludwig, Phys. Rev. B 48, 7297

(1993).
[53] G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Phys.

Rev. B 25, 4515 (1982); C. W. J. Beenakker, Phys. Rev.
B 46, 12841 (1992).

[54] A. K. Mitchell, L. A. Landau, L. Fritz, and E. Sela, Phys.
Rev. Lett. 116, 157202 (2016).

[55] Z. Iftikhar, S. Jezouin, A. Anthore, U. Gennser, F. D.
Parmentier, A. Cavanna, and F. Pierre, Nature 526, 233
(2015).

[56] P. Nozières, J. Low Temp. Phys. 17, 31 (1974); J. Phys.
(France) 39, 1117 (1978).

[57] I. Affleck and A. W. W. Ludwig, Nucl. Phys. B 360, 641

(1991).
[58] I. Affleck, A. W. W. Ludwig, H. B. Pang, and D. L. Cox,

Phys. Rev. B 45, 7918 (1992).
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