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We theoretically demonstrate that a type-II class of tilted Dirac cones can emerge in generalized
two-dimensional anisotropic lattice arrangements. This is achieved by introducing a special set of
graphyne-like exchange bonds by means of which the complete spectrum of the underlying Weyl
Hamiltonian can be realized. Our ab-initio calculations demonstrate a unique class of eigensolutions
corresponding to a type-II class of Dirac fermionic excitations. Based on our approach, one can
systematically synthesize a wide range of strongly anisotropic band diagrams having tilted Dirac
cones with variable location and orientation. Moreover, we show that asymmetric conical diffraction
as well as edge states, can arise in these configurations. Our results can provide a versatile platform
to observe, for the first time, optical transport around type-II Dirac points in two-dimensional
optical settings under linear, nonlinear, and non-Hermitian conditions.

The development of the relativistic Dirac equation in-
cited intense activity along different directions, including
for example the possibility for Dirac, Majorana, and Weyl
fermions [1]. While for low energies (below the symmetry
breaking electroweak transition) the majority of fermions
encountered in the Standard Model are of the Dirac type,
the case is fundamentally different for neutrinos, whose
nature still remains elusive. Weyl and Majorana particles
have also been considered as viable candidates in inter-
preting parity-symmetry violations exhibited by neutri-
nos, when considered within the context of an extended
Standard Model [2]. Recently, condensed matter settings
and bosonic environments have provided viable alterna-
tives for the study of such collective fermionic excitations.

The observation of massless Dirac fermions in graphene
systems [3] was instrumental in instigating similar ex-
plorations in other fields beyond solid state physics [4–
8], like for example photonics and ultracold atoms [9–
14]. Quite lately, there has been a resurgence of interest
in generalized forms of the so-called Weyl Hamiltonian,
which also involves the identity σ0 matrix, responsible
for tilting the Weyl cones. Based on these generaliza-
tions, one can identify two distinct classes of Weyl points
(WPs): (i) type-I with point-like Fermi surfaces, and
(ii) type-II with conical-like Fermi surfaces. While type-I
WPs can be encountered in various arrangements [15–19],
there are ongoing efforts, both experimental and theoret-
ical, to explore the prospect of type-II Weyl-like features
in lattices [20–25]. In this respect, the Lorentz-violating
type-II Weyl quasiparticles, whose existence is impossi-
ble in particle physics due to the Lorentz-covariant na-
ture of the Standard Model, are associated with the re-
sulting strongly-tilted Weyl cones. Since condensed mat-
ter [20–22] and bosonic arrangements (atomic, photonic,
etc.) [23–25] are not subject to such constraints, both can
provide a fertile ground for exploring different aspects of
type-II WPs.

The question now arises as to whether a similar clas-
sification can be made for Dirac points (DPs). While

type-I Dirac cones (DCs) are common in honeycomb con-
figurations and other two- (2D) and three-dimensional
(3D) materials [3–14], this is not the case for type-II
DCs. In recent studies, type-II Dirac semimetals [26–29]
and 3D topological photonic crystal structures [30] have
been demonstrated. Along these lines, of interest would
be to identify 2D photonic systems with analogous dis-
persion characteristics, akin to those proposed in solid
state physics [31, 32]. In this respect, one can experimen-
tally explore a number of possibilities, including photonic
Landau levels [12, 13], Zitterbewugung [33], and Klein
tunneling [34], in highly-anisotropic environments.

In this Letter, we investigate, for the first time, an all-
dielectric non-centrosymmetric photonic-lattice realiza-
tion, whose band structure exhibits 2D type-II DPs. By
mimicking the molecular bonds in an artificial car-
bon allotrope (graphyne-[35]), we propose a variant of
a centered-square lattice having adjustable waveguide
chains between adjacent sites. In this manner, the disper-
sion diagrams of this lattice can transition from type-I to
type-II DCs, by gradually ordering the exchange bonds
involved in the generalized Weyl Hamiltonian. Based on
ab-initio calculations, we have developed a systematic
methodology, through which one can at-will control the
orientation and position of the ensued highly-anisotropic
DCs. Furthermore, we demonstrate the existence of edge
states in ribbon geometries and we show that asymmet-
ric conical diffraction can take place, by exciting the
graphyne-like lattice near the type-II DP. The degrees
of freedom offered by our structure along with the abil-
ity to fine-tune its design parameters via existing high-
precision laser writing techniques [36], can enable further
understanding of the underlying transport mechanisms
associated with these exotic quasiparticles under linear,
nonlinear and non-Hermitian conditions [37–40].

We begin our theoretical analysis by considering the
generalized Weyl Hamiltonian in an SU(2) space, as
spanned by the Pauli matrices. In this representation,
near a singular DP, the Hamiltonian can be effectively
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FIG. 1. Dispersion band diagrams near the DPs for: (a) type-I
DCs with a point-like Fermi surface and (b) type-II DCs with
a conical-like Fermi surface. (c) The centered-square lattice is
shown in 3D (left), while the constituent A (blue) and B (red)
square sub-lattices, along with their inter- and intra-couplings
(t1, t2, t3, t4, t

′), are depicted in a magnified 2D view (right).

expressed as

H =

2∑
n=0

un · kσn, (1)

where un = (uxn, u
y
n) is the velocity vector, k = (kx, ky)

is the transverse wavevector, σ0 is the unitary matrix,
and σn, for n = 1, 2, are the first two Pauli matri-
ces. By employing an appropriate transformation [7],
Eq. (1) can assume the form of the minimal Weyl Hamil-
tonian H = υx0kxσ

0 + υy0kyσ
0 + υx1kxσ

1 + υy2kyσ
2, where

υ
x/y
0/1 now represent effective velocity terms. The case of

isotropic Dirac cones in graphene lattices can be simply
retrieved, when υx0 = υy0 = 0 (Fig. 1(a)). On the other
hand, anisotropic or tilted DCs can only emerge provided
that υ0x 6= 0 or υ0y 6= 0. As these coefficients increase in
size, the resulting tilt becomes even stronger. The criti-
cal condition (υx0/υ

x
1 )2+(υy0/υ

y
2 )2 > 1 marks the onset of

type-II Dirac points (Fig. 1(b)). In this regime, the pho-
tonic band diagram can become sufficiently anisotropic,
so as tipping of the cones can take place. As an up-
shot, the intersection of the upper and lower photonic
bands with the β = 0 plane (Fermi level) lead to hyper-
bolic curves. Moreover, within the same band, the group
velocity or gradient of the propagation constant β does
not change sign at the singularity point. These represent
unique signatures of type-II DPs [41], that are otherwise
absent in conventional type-I DPs.

In order to investigate the complete Weyl Hamilto-

nian spectrum, we first consider a centered-square lat-
tice, as shown in Fig. 1(c). Every site consists of a single-
mode waveguide element that is evanescently coupled
to its neighbors. Based on tight binding considerations,
one can then introduce auxiliary diagonal terms in the
Hamiltonian of the system, that can account for beyond-
nearest-neighbor interactions via the hopping term t′.
Here, we will study the most general case, where the
nearest-neighbor interactions are unequal (t1 6= t2 6= t3 6=
t4). Under these assumptions, this generalized arrange-
ment can be considered as a superposition of two dis-
placed square sub-lattices A,B (Fig. 1(c)), whose coupled
evolution equations can be described via

i∂zϕAm,n =
∑
p=0,1
q=0,1

t(pq)ϕBm−p,n−q + t′
∑

q=−1,1
ϕAm,n+q , (2a)

i∂zϕBm,n
=
∑
p=0,1
q=0,1

t(pq)ϕAm+p,n+q
+ t′

∑
q=−1,1

ϕBm,n+q
, (2b)

where ϕA, ϕB represent optical field modal amplitudes
at site (m,n), and t(pq) the coupling coefficients between
sub-lattices A,B, respectively.

The Floquet-Bloch solutions of Eqs. (2) can be di-
rectly obtained from the effective Hamiltonian Hk =(
h̃(k) h∗(k)

h(k) h̃(k)

)
, with h(k) = (t1+t3) cosK1+(t2+t4) cosK2

+i[(t1 − t3) sinK1 − (t2 − t4) sinK2], h̃(k) = 2t′ cos ky,
K1 = (kx + ky)/2, and K2 = (kx − ky)/2. Moreover,
the emergence of DCs requires the coalescence of the
eigenvalues of H at the singularity, which is satisfied
iff |h(k)| = 0. This implies for the location kDP =
(kDP

x , kDP
y ) of the Dirac points, that

kDP
x = 2 tan−1

√
− (t3 + t4)2 − (t1 + t2)2

(t3 − t4)2 − (t1 − t2)2
, (3a)

kDP
y = 2 tan−1

√
− (t3 + t2)2 − (t1 + t4)2

(t3 − t2)2 − (t1 − t4)2
. (3b)

In this respect, the velocity terms appearing in Eq. (1)
are given by ux0 = ∂h̃(k)/∂kx, uy0 = ∂h̃(k)/∂ky,
ux1 = ∂Re{h(k)}/∂kx, uy1 = ∂Re{h(k)}/∂ky, ux2 =
∂Im{h(k)}/∂kx, and uy2 = ∂Im{h(k)}/∂ky. Additionally,
the gradient of the dispersion relation w = (wx, wy) =
∂β(k)/∂k can be acquired from wx = ±∂(|h(k)|)/∂kx
and wy = ∂(h̃(k)± |h(k)|)/∂ky. In this configuration,

the factor ∂h̃(k)/∂ky is responsible for the tilt of the DCs
along the y-direction. Based on the previous results, it is
clear that the induced tilt depends solely on the hopping
term t′, while the position and slope of the cones are only
functions of the couplings t1, t2, t3, and t4.

Both velocities (ux0 , u
y
0) appear effectively as primary

diagonal terms in the Hamiltonian matrix. Due to their
linear dependence on the wavenumber k, they cannot
lead to a gap, since the corresponding terms in the
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FIG. 2. (a) 1D chain of waveguides (left), and equivalent
model (right), consisting now of only the two edge waveguide
cores coupled via an effective hopping parameter t̃. (b) The
centered-square lattice, after the inclusion of the main waveg-
uide chains, is shown on the left. The corresponding dispersion
diagram, together with a magnified view of the linear disper-
sion in the vicinity of a degenerate type-I DP, are shown on
the right. (c) The lattice after incorporating the secondary
waveguide chains along the y-direction (left panel). For the
mitigation of undesired effects, stemming from the asymmet-
ric couplings between adjacent waveguide chains, we slightly
alter the geometry (middle panel) to locally attain a more
symmetric topology in the vicinity of the main lattice points,
as depicted on the right.

Hamiltonian attain a zero value at the degenerate Dirac
point. This behavior is quite different from that encoun-
tered in deformed honeycomb configurations with con-
stant diagonal detuning terms [37], where Dirac cones can
only be sustained if non-Hermitian gain/loss elements are
also employed. In our system, instead, gapless states can
be retained, while at the same time strongly-tilted type-II
DCs can be introduced. What makes this possible, is the
high degree of flexibility offered by the five design param-
eters (t1, t2, t3, t4, t

′). The only restriction arises from the
fact that these parameters must be chosen in such a way,
that wavevector components (kDP

x , kDP
y ) are real. Note

that in the isotropic case (t1 = t2 = t3 = t4), Eqs. (3) ex-
hibit a singularity. Thus, perturbations around this point
can lead to a topological creation/destruction of the DCs.

Based on these considerations, we then synthesize the
proposed lattice model. To do so, the nearest-neighbor
hoping terms must be unequal, while the next-nearest-
neighbor coupling strength t′ is enhanced, in order to pro-

duce highly-anisotropic DCs. In this work, both aspects
are simultaneously addressed by incorporating waveguide
chains that play a role akin to that of exchange bonds
among the molecular units of graphyne. Here, the sites
of the original configuration (Fig. 1(c)) are referred to
as the main lattice sites (belonging to sub-lattices A,B)
so as to distinguish them from the additional waveguide
(chain) elements, which will be subsequently introduced.

To examine the properties of such chains, we herein
assume, for simplicity, four cores arranged in an one-
dimensional (1D) mirror-symmetric formation, as shown
in Fig. 2(a). In this configuration, the modal field ampli-
tudes ϕi satisfy

βϕ−2 = V
2
ϕ−2

+ t12ϕ−1, (4a)

βϕ−1 = V1ϕ−1 + t12ϕ−2 + t11ϕ1, (4b)

βϕ1 = V1ϕ1 + t11ϕ−1 + t12ϕ2, (4c)

βϕ2 = V2ϕ2 + t12ϕ1, (4d)

where V1 and V2 represent on-site optical potential
terms. Given the underlying mirror-inversion symmetry
exhibited by this chain (Fig. 2(a)), one can find that,
around the singularity point (β ≈ 0), Eqs. (4) are effec-
tively reduced to

βϕ2 =

(
V2 −

t12V1
V 2
1 − t211

)
ϕ2 +

t212t11
V 2
1 − t211

ϕ−2, (5a)

βϕ−2 =
t212t11
V 2
1 − t211

ϕ2 +

(
V2 −

t12V1
V 2
1 − t211

)
ϕ−2. (5b)

In other words, Eqs. (5) provide an alternative descrip-
tion of the system, since the action of the two central
cores in the chain can be essentially described by an ef-
fective hoping parameter t̃ = t212t11/(V

2
1 − t211), as shown

in Fig. 2(a). Without any loss of generality, we can ex-
tend this same concept in similar arrangements involving
more waveguide elements. Furthermore, by locally per-
turbing a waveguide anywhere in the 1D lattice (e.g. by
slightly changing its refractive index), we can increase or
decrease this effective hopping term t̃. This flexibility al-
lows for the realization of generalized Weyl Hamiltonians
near a degenerate point.

An example of such a lattice topology, supporting
isotropic type-I DPs, is shown in Fig. 2(b). In addi-
tion to the unit cell of Fig. 1(c), three main waveg-
uide chains (MCs) have been inserted between nearest-
neighbor sites in such a way so as to satisfy the rela-
tions t1 = t2 = t4 and t3 = t′ ≈ 0 (thus inducing a P-
symmetry breaking). For this set of parameters, Eqs. (3)
admit real solutions and hence isotropic DCs emerge at
the wavevector locations kDP

1 = (2π/3, 2π/3) and kDP
2 =

(−2π/3,−2π/3). Subsequently, the optical band struc-
ture can be retrieved by numerically solving the parax-
ial wave equation (Floquet-Bloch solutions) for this unit
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FIG. 3. Dispersion curves (type-I DP) along kx = 2π/3 (left) and ky = 2π/3, (right), corresponding to the non-centrosymmetric
graphyne-like arrangement, depicted in the right panel of Fig. 2(c). Each graph is related to a different value of the refractive
index difference of the secondary chains (∆nSC = 1, 1.03, 1.07 × ∆n0). In all cases, the refractive index of the main chains is
kept identical to that of the main lattice nodes (∆nMC = ∆n0 = 0.002). By increasing, the value of ∆nSC, this tilt becomes
pronounced that tipping of the cones takes place (type-II DCs). This becomes evident for ∆nSC = 1.3∆n0 in (b), which
depicts the respective bulk band structure throughout the Brillouin zone (right), along with a magnified view of the type-II
DPs (left, inset: hyperbolic-like intersection with the β = 0 plane). The linear dispersion near the Dirac point, located at
(kx0 , ky0) = (2π/3, 2π/3), is shown in (c). In (d), asymmetric and symmetric conical diffraction (inset) is demonstrated, after
exciting (near the generate point) the lattices of Fig. 2(c) - ∆nSC = 1.3∆n0 and Fig. 2(b) - ∆nSC = 0, respectively. In (e) and
(f), the band diagram and respective eigenmode distribution are depicted for top (left) and bottom (right) ribbon-like edge
states, supported by the lattice in the right panel of Fig. 2(c) for ∆nSC = 1.3∆n0.

cell. Our results are in excellent agreement with those ob-
tained from the tight-binding approximation, as shown in
Fig. 2(b). In this same figure, the upper and lower pho-
tonic bands correspond to the lowest-order modes (even
and odd), with respect to the nodes of sub-lattices A and
B. To implement this configuration, we use the following
physical parameters: the diameter and refractive index
of the waveguides (for both the main lattice points and
the MCs) are set to be D = 6µm and n = nMC = 1.452,
respectively, while the refractive index of the background
medium is nb = 1.45 (∆n0 = ∆nMC = 0.002) at a wave-
length of λ = 1550 nm. Such values can be readily at-
tained experimentally via laser-writing techniques [36] or
opto-thermal nonlinearities [42].

In what follows, we introduce anisotropicity in the
photonic band diagram by means of secondary waveg-
uide chains (SCs) between next-nearest-neighbor sites,
as shown in Fig. 2(c). To identify where the transition
from a type-I to type-II DP will occur, we numerically
investigate different cases (Figs. 3(a)-3(d)), where we pro-
gressively increase the refractive index difference ∆nSC
of the secondary chain waveguides, while keeping the re-
maining parameters the same. In Fig. 3(a), the Dirac
point is of type-I, as long as ∆nSC ≤ 1.07∆n0. Once
∆nSC exceeds these values, a strongly-tilted DC emerges

(Figs. 3(b), 3(c)). In this case, the intersection of the
upper and lower photonic bands with the β = 0 plane
leads to hyperbolic-like contours (open “Fermi” surfaces),
which is a characteristic signature of type-II DPs.

To gain insight into the underlying transport processes,
we simulate the optical beam dynamics in a lattice, con-
sisting of 2500 unit cells. A Gaussian beam is used to
probe these effects near the degenerate DP. When the
Dirac cones are strongly-tilted, we numerically observe,
a light ring, which now constantly drifts along the direc-
tion predicted by the slope of the respective asymmet-
ric band diagram in the vicinity of a type-II singularity
(Fig. 3(d)). On the other hand, isotropic propagation is
expected [11], when the secondary chains are excluded
(inset of Fig. 3(d)).

Given its non-trivial topology, of interest would be to
study the characteristics of edge states, supported by this
generalized centered-square lattice. Along these lines, we
truncate this arrangement laterally in the y-direction
(ribbon-like structure) and, subsequently, we obtain the
band spectrum as a function of kx. As shown in Fig. 3(e),
two distinct classes of modes emerge: i) bulk modes (aris-
ing from the bulk band structure of Fig. 3(b)) and ii) edge
modes (existing at the edges - Fig. 3(f)). The inherent
anisotropy of the lattice, along with the different edge
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topologies, lead to non-stationary counter-propagating
edge states. Their respective intersection in the band di-
agram is dictated by the strength of the graphyne-like
exchange bonds. Note that, the time-invariant nature of
the proposed model indicates that the non-chiral edge
states cannot be protected against random backscatter-
ing defects [17]. This latter feature can be introduced,
provided the waveguide elements are appropriately mod-
ulated along the propagation direction [25, 43].

In conclusion, in the present work we have theoreti-
cally provided the necessary conditions for the emergence
of type-II Dirac cones in a non-centrosymmetric version
of the centered-square photonic lattice with graphyne-
like exchange bonds. By doing so, we demonstrated that
the photonic dispersion diagram can be modified at will,
thus allowing control over the orientation, location and
anisotropy of the emerging DCs. Also, effects like asym-
metric conical diffraction and edge states in ribbon-like
structures have been shown to exist near the type-II point
of degeneracy. The proposed configurations can be used
to investigate exceptional point dynamics in the vicinity
of type-II DPs in non-Hermitian and PT-symmetric sys-
tems. This class of massless type-II Dirac fermions may
also lead to novel topologically non-trivial architectures
and might pave the way to explore complex light behav-
ior in highly-anisotropic dispersion environments.
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