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We use an atomic fountain clock to measure quantum scattering phase shifts precisely through
a series of narrow, low-field Feshbach resonances at average collision energies below 1 uK. Our low
spread in collision energy yields phase variations of order +m/2 for target atoms in several F,mpg
states. We compare them to a theoretical model and establish the accuracy of the measurements
and the theoretical uncertainties from the fitted potential. We find overall excellent agreement, with
small statistically significant differences that remain unexplained.

PACS numbers:

Coherence and the precise measurements allowed by
long coherence times are central themes in atomic
physics. The coherent nature of atom-atom scattering
is important in phenomena such as Bose-Einstein con-
densation [1, 2], Feshbach resonances [3-5] and ultracold
molecule formation [6, 7]. Atom-atom scattering also
shifts the frequency of atomic clocks and interferometers
[8-12], which often limits their precision and accuracy.
Conversely, atom interferometry can directly probe the
phase shifts at the core of quantum scattering [13-19]
and sensitively test models of atom-atom interactions.

Accurate knowledge of low-energy scattering is espe-
cially important for cesium as its clock collisional fre-
quency shift is predicted to pass through zero around
100 nK [11]. This is the energy scale for collisions
in PHARAO, a microgravity laser-cooled cesium clock
scheduled to launch soon as part of the ACES mission
[20]. Additionally, precise measurements of scattering
phase shifts, or equivalently scattering lengths, near nar-
row Feshbach resonances may provide high sensitivity to
the time variation of fundamental constants [21, 22].

Here we use an atomic clock to make precision mea-
surements of phase shifts for the scattering of ultra-
cold cesium atoms through several narrow Feshbach res-
onances, as the magnetic field increases from 0 to 0.4 G.
A narrow spread of collision energies allows us to observe
phase shift variations of nearly 7 through the resonances.
We establish the accuracy of our measurements and com-
pare them to coupled-channel calculations that use recent
interaction potentials from fits to Feshbach resonances
and near-threshold bound states at fields from 10 G to
1000 G [23]. We find overall excellent agreement with
the model for the positions of the ultra-low-field Feshbach
resonances, significantly improved from that obtained us-

ing the previous best interaction potential [5]. The abso-
lute phase-shift differences also agree well, although some
scattering channels show significant and yet-unexplained
deviations.

Our interferometric technique [18, 19] precisely and
unambiguously detects differences of quantum scatter-
ing phase shifts [13-17]. Such information is difficult to
extract from measurements of scattering cross sections,
both because cold atom densities are challenging to mea-
sure accurately and because cross sections depend on the
squares of scattering lengths. In our atomic fountain
clock, a microwave 7 /2 pulse creates a coherent superpo-
sition of the cesium clock states |F,mp) = |3,0) = 3 and
|4,0) = 4. The clock atoms then collide with “target”
atoms in another state |j) = |F,mp) with s-wave phase
shifts 03 ; and d4 ;, forming an outgoing spherical shell as
shown in Fig. la. Consequently, the phase of the scat-
tered clock coherence, represented by the clock hands in
Fig. 1a, jumps by the difference of the s-wave phase shifts,
®; =64, — 03,;. A second 7/2 pulse with an adjustable
phase yields a Ramsey fringe with the phase shift of the
clock coherence ®;. The scattered atoms are detected,
and the atoms in the forward scattering direction ex-
cluded, using a velocity-selective stimulated Raman tran-
sition [24]. This technique takes advantage of the phase
and frequency accuracy of atomic clocks and precisely
probes arbitrarily large phase differences. Several other
techniques have also been demonstrated that precisely
probe small differences of scattering lengths [2, 25, 26].

Scattering phase shifts change by 7 as the magnetic
field B is scanned across a Feshbach resonance. How-
ever, observing the full phase variation requires a nar-
row spread of collision energies. Our previous obser-
vations of cesium scattering phase shifts through Fesh-
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(a) Atoms in a coherent superposition of the cesium clock states collide with atoms in a target state. The clock atom

wave packet scatters as a spherically outgoing s-wave (pink shell) and continues unscattered (violet cloud). The clock faces
indicate the differential scattering phase shift of the clock coherence. (b) Transition probability for scattered (solid blue) and
unscattered (dashed grey) clock atoms. Each data point represents a single fountain launch with target atoms in |3, —3), a mean
collision energy of E. = 798 nK, and B = 80 mG. (c) After the first Ramsey pulse, the clock atoms prepared with dash-dot
blue velocity distribution collide with the target atoms with the dotted purple distribution. The collisions redistribute the
clock atom velocities (solid green). d) Subtracting the initial clock velocity distribution from the distribution with scattering
shows the net redistribution, which shifts the initial velocity class towards v = 0. The mean collision energy can be tuned by

changing the initial selected and final detected velocity.

bach resonances studied the scattering between atoms in
two distinct clouds [19] in our juggling atomic clock [13].
At collision energies E. between 12 and 50 pK, cloud
temperatures even as low as 400 nK give a significant
spread of collision energies, of order 10 uK, broadening
the narrow resonances and suppressing the excursions of
the phase shifts [19]. Here, we instead select and collide
two velocity classes from a single launched cloud in our
fountain clock. The low collision energies of 0.5 to 1 uK
and correspondingly narrow energy spread yield observed
phase-shift variations of nearly 7 through several narrow
Feshbach resonances.

Our experimental sequence begins with launching
atoms from a magneto-optical trap and cooling them to
400 nK with degenerate sideband cooling in a moving-
frame 3D optical lattice [18, 19, 27]. After the sideband
lattice cooling, 65% of the atoms are in |3,3), 20% are
in |3,2), and the rest are in other |3,mp) states. The
atoms in |3, 3) are transferred to the desired target state,
|3, mp = £1,£2,43) or |4,mp # 0), by a series of mi-
crowave pulses. To prepare mp < 0 target states, a non-
adiabatic magnetic field reversal precedes the microwave
pulses to transfer the atoms from |3,3) to |3,—3). For
all targets except |3,41) [28] [29], the atoms initially in
|3,2) are transferred to either |3,0) or |4,0) by another
series of microwave pulses, interleaved with the target-
atom microwave pulses, and a stimulated Raman pulse.
The Raman pulse is velocity-sensitive and selects a slice
of the velocity distribution, 36 nK wide, in the horizon-
tal = direction, imparting two photon recoils to the se-
lected atoms, as in Fig. lc. Unwanted atoms in other
mp < 0 states and other velocity classes are removed
with clearing laser pulses tuned to the 65,5 — 6P/,
F =3 — 5 and 3 — 2/ transitions. A 7/2 microwave

pulse then prepares the clock atoms in a coherent super-
position of |3,0) and |4,0), after which the collisions of
the clock atoms with the target atoms above the clock
cavity change their velocities v. In Fig. 1c, the collisions
tend to scatter atoms with large velocities towards v = 0
[30] as they begin to thermalize. For the small fraction of
clock atoms that scatter, the phase of the clock coherence
is shifted by the difference of the s-wave scattering phase
shifts [18]. After the atoms fall back into the cavity, a
second microwave 7/2 pulse produces the Ramsey fringe
in Fig. 1b. A clearing pulse removes the target atoms, as
well as the clock atom population in the same hyperfine
state F' as the target atoms. For |4, mp) target atoms, a
stimulated Raman transition (the Raman probe) trans-
fers a narrow, 36 nK wide, velocity class of scattered
atoms to |4,0). A laser resonant with the 4 — 5’ transi-
tion excites these atoms and we collect their fluorescence
to obtain Fig. 1b. In Fig. 1b, we also measure a reference
Ramsey fringe, where we clear the target atoms before
the first Ramsey pulse and detect atoms at the center of
the clock-atom velocity distribution. For |3, mg) target
atoms, an additional microwave pulse after the F' = 3
clearing pulse transfers the clock atoms in |4, 0) to |3, 0),
and then a second clearing pulse removes F' = 4 atoms
before a stimulated Raman probe as above. We evaluate
and subtract backgrounds using a pump-probe technique
that clears the target atoms immediately before the first
Ramsey pulse, inhibits the clock atom Raman selection,
or both, to yield the Ramsey fringes as shown in Fig. 1b
[18, 19, 30].

Fig. 2 shows the measured phase shifts for target atoms
in each |F,mp # 0 ) state, as we traverse a number
of low-field Feshbach resonances. Each panel shows the
measured phase shifts for a mean collision energy of 656
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FIG. 2. (color online). a)-g) Magnetic field dependence of the differential phase shift ® for target atoms in the |4, mr # 0)
and |3,mr # 0) states; negative B corresponds to the opposite sign of mp. The scattering phase shifts vary rapidly with
magnetic field through a series of Feshbach resonances. The blue circles (red diamonds) are experimental results for mean
collision energies of 616-656 nK (746-798 nK) and the curves are corresponding energy-averaged results from coupled-channel
calculations on the best-fit potential [23]. h) Comparison of measured (red diamonds) and theoretical values of ®3 +3. All are
shown after subtracting ®3 +3 from the best-fit potential [23]. The best-fit potential and experimental results differ by ~ 0.1
rad throughout the range and their variations through the Feshbach resonances agree very well. The previous best potential
(solid red line) [5] gives much larger deviations from experiment through the resonances. The 6 dashed curves indicate the
uncertainty of the best-fit potential. Their differences from the best-fit potential are small compared to the ~ 0.1 rad offset of

the experimental results.

and 798 nK [31], which is changed by selecting a different
detected velocity of the scattered clock atoms. Results
for target atoms with positive or negative mp are shown
at magnetic fields with opposite signs, producing plots
that are continuous through B = 0. The Feshbach res-
onances for 656 nK occur at lower magnetic fields than
those for 798 nK, and we observe slightly larger phase
variations through the resonances, as expected from the
smaller spread of collision energies. The error bars are
the quadrature sum of the statistical and systematic un-
certainties, typically 30 mrad for 10 minutes of averaging
at points far from resonances. Through the resonances,
where the scattering cross section passes through zero,
they may be as large as 100 mrad after 20 minutes of
averaging.

There are distinct similarities between the resonance
positions and profiles for target atoms |3, +|mp|) and
|4, F(|mr| + 1)). In Figs. 2a)-g), we observe two clear
resonant features. For target atoms in |3,3) and |4, —4)
these resonances are near 20 and 180 mG. For each of the
other target states, one resonance is near 50 mG and the
other near —80 mG. We do not expect any resonances for

target atoms in |3, —3) and |4,4) because conservation of
angular momentum prohibits coupling to any closed s-
wave channels with halo states. While we observe only
two resonant features for each |mp|, there are additional
resonances that are not resolved, because they overlap
or are too narrow. For example, the results in Ref. [19]
indicate that there are two Feshbach resonances for |3, 2)
target atoms, while here we see only one. We show exper-
imentally that these resonances are in scattering channels
with clock and target atoms in different hyperfine levels,
e.g. |4,0) and |3, 3), by measuring velocity-changing cross
sections [30].

The amplitude of the phase variation is different for
each resonant feature. We observe variations of nearly
7 for some resonances, but others produce variations as
small as a few hundred mrad. The scattering phase shift
wraps through 7 across an elastic Feshbach resonance,
but even in the elastic limit we will observe a smaller
variation if the resonance is narrower than our spread of
collision energies. Inelastic loss may also reduce the am-
plitude of the phase variations. Additional sharp phase
changes may be caused by the closing of inelastic scat-



tering channels, but these are usually smaller and do not
wrap through 7.

Fig. 2 also shows the results of coupled-channel cal-
culations performed with the MOLSCAT quantum scat-
tering package [32], using the interaction potentials of
Berninger et al. [23]. The experimental observable is the
Ramsey fringe in Fig. 1b, which results from the inter-
ference of the scattered atoms only, given by a quantity
J = {|fs; + fa;*) [33]. Here the brackets denote an
energy average, and f3 ; and f; ; indicate the scattering
amplitudes for atoms in states 3 and 4, respectively, col-
liding with an atom in state j. The phase of the fringe
is shifted by the effect of the collisions, and is directly
related to the interference term in J. The phase shift
can therefore be expressed as ®; = arg(T3 ;77 ;), where
Ts; and T} ; are the diagonal T-matrix elements corre-
sponding to the scattering amplitudes f3 ; and f4 ;.

The T-matrix elements may be written exactly in
terms of complex k-dependent scattering lengths a, T' =
2ika/(1 + ika) [34]. This gives

Qikag 1 —27,]@’0,2 1
O = d )Y
J arg<<1+ika3’j> (1—2'1«@;]. S

Writing a = a —if8, 1 + ika = 1 + k8 + ika has a phase
arctan[ka/(1 + kB)]. If the range of energies is narrow,
Eq. (1) reduces to

kOég i kOé4 1
d,; ~ —arct ) t —=)
J arc an(1_~_k53’j>+arc an(l—&-k@;,j)
+ arg(as ;) — arg(aa,;). (2)

When the scattering is purely elastic, a is real, and Eq.
2 reduces to the difference between the scattering phase
shifts ®; = d4.; — J3,j, with 6 = —arctan ka. At zero col-
lision energy, d4,; — 03; vanishes but, in the presence of
inelasticity, the phases arg(a) contribute to ®; and per-
sist to zero energy. Note that our coupled-channel calcu-
lations evaluate the full expression (1) for ®;, including
inelastic contributions.

The coupled-channel calculations are in overall excel-
lent agreement with the experimental results. The reso-
nance positions and profiles are well reproduced. Away
from the Feshbach resonances, the background phase-
shift differences @4 ,,,,. depend weakly on collision energy
and agree quite well with the theoretical model. How-
ever, those for |3, mp) target atoms show significant en-
ergy dependences and small but statistically significant
differences with the theoretical model.

To estimate the uncertainty in the predictions of the
fitted potential, we have repeated the fits of ref. [23] and
determined uncorrelated directions in the 6-parameter
space. We have then found a potential shifted in each
of these directions by an amount that doubles the sum of
squares of residuals x? for the original data set of ref. [23].
For a locally linear fit, these correspond to approximately
50 uncertainties. We have repeated the coupled-channel

calculations of ®; for these 6 potentials. The differences
from the best-fit potential are small, and are shown for
|3,£3) in Fig. 2h), together with corresponding differ-
ences for the experimental results. For other targets, the
differences between the shifted potentials and the best-fit
potential are even smaller. We conclude that the remain-
ing differences between experiment and theory are well
outside the range of the uncertainties from the interac-
tion potential derived from the experiments of Ref. [23].

Fig. 2h) also shows the results obtained from coupled-
channel calculations using the previous best potential [5],
also plotted as differences from the best-fit potential. For
|3,£3) and the other target states. The potential from
[23] gives substantially better agreement through the res-
onances. The details of the bound states that cause the
low-field resonances are beyond the scope of this paper.
In essence, however, there is a group of pure triplet states
bound by only 3.7 kHz at zero field that, as a function of
magnetic field, are far from parallel to the atomic thresh-
olds below 0.1 G. Their crossings with the thresholds
cause the resonances we observe. At higher fields they
mix with more deeply bound states that possess some
singlet character, and eventually become almost parallel
to the atomic thresholds at fields above 0.3 G.

To achieve the accuracy of these measurements, the ex-
perimental sequence above avoids and accounts for sev-
eral systematic errors. The largest remaining system-
atic correction applied to the data in Fig. 2 comes from
the interference between the scattered and unscattered
waves. This gives the usual loss of atom current in the
forward scattering direction, producing the dip in the dis-
tribution in Fig. 1d) and contributing a different phase
to the scattered Ramsey fringe in Fig. 1b). We deter-
mine this contribution as a function of the probed veloc-
ity: the phase shift of the interference current is approx-
imately zero and therefore, when ®; is far from 0, the
correction can be significant [28]. For the background
P31 p—(1,2,3), this correction is about (80,80,120) mrad
for the low energy and (40,70,100) mrad for high energy,
increasing ®3,,, (closer to the theory) with a typical
uncertainty of 25 mrad. The differences in Fig. 2h for
|3, +3) are significantly larger than this systematic un-
certainty. Another significant systematic arises because
the scattered atoms experience a cold collision frequency
shift from the target atoms [8, 12], in addition to the dif-
ferential scattering phase shift. Our sequence evaluates
and corrects for this collision shift by measuring the col-
lision shift of the unscattered atoms (forward direction)
due to the target atoms [28, 29]. The correction is typ-
ically —40(0) £+ 3 mrad for ®3(4),,. We also apply a
small correction due to inelastic spin-changing collisions
populating other |F,mp) target states [28, 29].

In summary, we precisely measure quantum scatter-
ing phase shifts spanning a series of Feshbach resonances
and compare them to a state-of-the-art theoretical model.
These results provide a stringent confirmation of the ce-



sium interaction potentials of ref. [23], but small, statisti-
cally significant differences remain unexplained. We have
considered the uncertainties in the theoretical predictions
due to statistical uncertainties in the fitted interaction
potentials and shown them to be very small. The theory
shows that inelastic processes make important contribu-
tions to the observable quantities that persist even in
the limit of zero collision energy. With this experimental
technique, we can currently determine differential scat-
tering phase shifts with mrad precision in less than a
day of averaging. Further work using these and further
improved interaction potentials may probe how this tech-
nique can best set stringent limits on the time variation of
fundamental constants, such as the electron-proton mass
ratio, by observing the constancy of the scattering phase
shifts near narrow Feshbach resonances [21, 22].

We are grateful to S. Gensemer for contributions dur-
ing the initial stages of this experiment, to C. R. Le Sueur
for work to modify MOLSCAT to handle asymptotically
degenerate states, and to E. Tiesinga for stimulating dis-
cussions. We acknowledge financial support from the
NSF, NASA, Pennsylvania State University and the UK
Engineering and Physical Sciences Research Council un-
der grant numbers EP/1012044/1, EP/N007085/1, and
EP/P01058X/1. This work is part of the Vici research
programme with project number 680-47-623, which is fi-
nanced by the Netherlands Organisation for Scientific Re-
search (NWO).

* kgibble@psu.edu
t J.M.Hutson@durham.ac.uk

[1] D. Hall, M. R. Matthews, J. R. Wieman, C. E. Wieman,
and E. A. Cornell, Phys. Rev. Lett. 81, 1539 (1998).

[2] A. Widera, F. Berbier, S. Folling, T. Gericke, O. Mandel,
and I. Bloch, New J. Phys. 8, 152 (2006).

[3] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Rev.
Mod. Phys. 82, 1225 (2010).

[4] S. Inouye, M. R. Andrews, J. Stenger, H. J. Miesner,
D. M. Stamper-Kurn, and W. Ketterle, Natue 392, 151
(1998).

[5] C. Chin, V. Vuletic, A. J. Kerman, S. Chu, E. Tiesinga,
P. J. Leo, and C. J. Williams, Phys. Rev. A 70, 032701
(2004).

[6] C. A. Regal, C. Ticknor, J. L. Bohn,
Nature 424, 47 (2003).

[7] J. Herbig, T. Kraemer, M. Mark, T. Weber, C. Chin,
H. C. Nager]l, and R. Grimm, Science 301, 1510 (2003).

[8] K. Gibble and S. Chu, Phys. Rev. Lett. 70, 1771 (1993).

[9] C. Fertig and K. Gibble, Phys. Rev. Lett. 85, 1662
(2000).

[10] F. P. D. Santos, H. Marion, S. Bize, Y. Sortais, A. Cla-
iron, and C. Salomon, Phys. Rev. Lett. 89, 233004
(2002).

[11] K. Szymaniec, W. Chalupczak, E. Tiesinga, C. Williams,
S. Weyers, and R. Wynands, Phys. Rev. Lett. 98, 153002
(2007).

and D. S. Jin,

[12] D. J. Papoular, S. Bize, A. Clairon, H. Marion, S. J. J.
M. F. Kokkelmans, and G. V. Shlyapnikov, Phys. Rev.
A 86, 040701(R) (2012).

[13] R. Legere and K. Gibble, Phys. Rev. Lett. 81, 5780
(1998).

[14] N. R. Thomas, N. Kjergaard, P. S. Julienne, and A. C.
Wilson, Phys. Rev. Lett. 93, 173201 (2004).

[15] C. Buggle, J. Léonard, W. von Klitzing, and J. T. M.
Walraven, Phys. Rev. Lett. 93, 173202 (2004).

[16] T. Volz, S. Diirr, N. Syassen, G. Rempe, E. van Kempen,
and S. Kokkelmans, Phys. Rev. A 72, 010704 (2005).

[17] A. S. Mellish, N. Kjeergaard, P. S. Julienne, and A. C.
Wilson, Phys. Rev. A 75, 020701 (2007).

[18] R. A. Hart, X. Xu, R. Legere, and K. Gibble, Nature
446, 892 (2007).

[19] S. D. Gensemer, R. B. Martin-Wells, A. W. Bennett, and
K. Gibble, Phys. Rev. Lett. 109, 263201 (2012).

[20] P. Laurent, M. Abgrail, C. Jentsch, P. Lemonde,
G. Santarelli, A. Clairon, I. Maksimovic, S. Bize,
C. Salmon, D. Blonde, J. F. Vega, O. Grosjean, F. Pi-
card, M. Saccoccio, M. Chaubet, N. Ladiette, L. Guillet,
I. Zenone, C. Delaroche, and C. Sirmain, Appl. Phys. B
84, 683 (2006).

[21] C. Chin and V. Flambaum, Phys. Rev. Lett. 96, 230801
(2006).

[22] A. Borschevsky, K. Beloy, V. V. Flambaum, and
P. Schwerdtfeger, Phys. Rev. A 83, 052706 (2011).

[23] M. Berninger, A. Zenesini, B. Huang, W. Harm, H.-C.
Néagerl, F. Ferlaino, R. Grimm, P. S. Julienne, and J. M.
Hutson, Phys. Rev. A 87, 032517 (2013).

[24] M. Kasevich, D. S. Weiss, E. Riis, K. Moler, S. Kasapi,
and S. Chu, Phys. Rev. Lett. 66, 2297 (1991).

[25] M. R. Matthews, D. S. Hall, D. S. Jin, J. R. Ensher,
C. E. Wieman, E. A. Cornell, F. Dalfovo, C. Minniti,
and S. Stringari, Phys. Rev. Lett. 81, 243 (1998).

[26] M. Egorov, B. Opanchuk, P. Drummond, B. V. Hall,
P. Hannaford, and A. I. Sidorov, Phys. Rev. A 87,
053614 (2013).

[27] P. Treutlein, K. Y. Chun, and S. Chu, Phys. Rev. A 63,
051401 (2001).

[28] A. Bennett, Precision Measurements of Quantum Scat-
tering Phase Shifts and their Variation through Feshbach
Resonances, Ph.D. thesis, Penn State University (2015).

[29] See Supplemental Material at xxx for experimental de-
tails.

[30] K. Gibble, S. Chang, and R. Legere, Phys. Rev. Lett.
75, 2666 (1995).

[31] These mean collision energies are weighted by Eo' to
account for the energy dependence of (72/k*)T3T; near
1 uK. For |3(4), £1 >, the selection width is 13 nK and
the mean energies are 644(616) and 771(746) nK. The
spread of collision energies for low and high energy are
428 and 461 nK for mp # +1 and 416(407) and 437(434)
nK for |3(4), £1 >.

[32] J. M. Hutson and S. Green, “MOLSCAT computer pro-
gram, version 14,” distributed by Collaborative Compu-
tational Project No. 6 of the UK Engineering and Phys-
ical Sciences Research Council (1994).

[33] S. J. J. M. F. Kokkelmans, Interacting atoms in clocks
and condensates, Ph.D. thesis, Technische Universiteit
Eindhoven (2000).

[34] J. M. Hutson, New J. Phys. 9, 152 (2007).


mailto:kgibble@psu.edu
mailto:J.M.Hutson@durham.ac.uk

	Atomic Clock Measurements of Quantum Scattering Phase Shifts  Spanning Feshbach Resonances at Ultralow Fields
	Abstract
	Acknowledgments
	References


