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We study the universal properties of eigenstate entanglement entropy across the transition between
many-body localized (MBL) and thermal phases. We develop an improved real space renormalization
group approach that enables numerical simulation of large system sizes and systematic extrapolation
to the infinite system size limit. For systems smaller than the correlation length, the average
entanglement follows a sub-thermal volume law, whose coefficient is a universal scaling function. The
full distribution of entanglement follows a universal scaling form, and exhibits a bimodal structure
that produces universal subleading power-law corrections to the leading volume-law. For systems
larger than the correlation length, the short interval entanglement exhibits a discontinuous jump at
the transition from fully thermal volume-law on the thermal side, to pure area-law on the MBL side.

Recent experimental advances in synthesizing isolated
quantum many-body systems, such as cold-atoms [1–4],
trapped ions [5, 6], or impurity spins in solids [7, 8], have
raised fundamental questions about the nature of sta-
tistical mechanics. Even when decoupled from external
sources of dissipation, large interacting quantum systems
tend to act as their own heat-baths and reach thermal
equilibrium. This behavior is formalized in the Eigen-
state Thermalization Hypothesis (ETH) [9, 10]. Generic
excited eigenstates of such thermal systems are highly
entangled, with the entanglement of a sub-region scaling
as the volume of that region (“volume law”). This results
in incoherent, classical dynamics at long times. In con-
trast, strong disorder can dramatically alter this picture
by pinning excitations that would otherwise propagate
heat and entanglement [11–17]. In such many-body lo-
calized (MBL) systems [18–20], generic eigenstates have
properties akin to those of ground-states. They exhibit
short-range entanglement that scales like the perimeter
of the sub-region [17] (“area law”), and have quantum co-
herent dynamics up to arbitrarily long timescales [21–27],
even at high energy densities [17, 26, 28–31].

A transition between MBL and thermal regimes re-
quires a singular rearrangement of eigenstates from
area-law to volume-law entanglement. This many-body
(de)localization transition (MBLT) represents an entirely
new class of critical phenomena, outside the conventional
framework of equilibrium thermal or quantum phase tran-
sitions. Developing a systematic theory of this transition
promises not only to expand our understanding of possible
critical phenomena, but also to yield universal insights
into the nature of the proximate MBL and thermal phases.

The eigenstate entanglement entropy can be viewed as a
non-equilibrium analog of the thermodynamic free energy
for a conventional thermal phase transition, and plays a
central role in our conceptual understanding of the MBL
and ETH phases. Describing the entanglement across the
MBLT requires addressing the challenging combination
of disorder, interactions, and dynamics. Consequently,
most studies have resorted to fully microscopic simulation

methods like exact diagonalization (ED)[15, 16, 32–34].
The exponential complexity of such methods fundamen-
tally limits them to small systems (. 30 sites), preventing
them from accurately capturing universal scaling proper-
ties. For example, critical exponents computed from ED
violate rigorous scaling bounds [35, 36].

A promising alternative is to eschew a microscopic
description, which is not required to compute universal
scaling properties, and instead develop a coarse grained
renormalization group (RG) description. Two related RG
approaches [37, 38] have produced a consistent picture of
the MBLT (see also [39]). Nonetheless, both approaches
rest on ad-hoc albeit plausible heuristics for computing
many-body matrix elements. In this paper, we develop an
RG scheme building upon [38], but whose steps are rooted
in well-established properties of matrix-elements in MBL
and thermal systems. Using this modified RG scheme,
we compute the full scaling structure of entanglement
across the transition, by simulating large systems sizes
with many (105–106) disorder realizations, that allow
systematic extrapolation to the infinite size limit. The
resulting scaling properties depart dramatically from those
of conventional equilibrium critical points, highlighting
the unusual nature of the MBLT.

RG approach – Our RG approach builds a coarse-
grained picture of eigenstates by identifying collective
many-body resonances that destabilize the MBL phase.
Although this approach is not tied to a particular micro-
scopic model, we picture a chain of spinless fermions with
Hamiltonian H =

∑
x(−c†xcx+1 +h.c.−µxρx+V ρxρx+1),

Here ρx = c†xcx is the fermion density on site x, and
µx is a random chemical potential drawn from a uni-
form distribution on [0,W ]. The non-interacting system
(V = 0) is Anderson localized with localization length
x0 ≈ 2/ log

(
1 +W 2

)
[38]. Interactions (|V | > 0) can

drive multi-particle collective resonances. For weak inter-
actions, V �W , the system remains MBL and these res-
onances restructure the local integrals of motion (LIOMs)
from weakly dressed single-particle orbitals to few-body
LIOMs [40–43]. For sufficiently strong interactions, MBL
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FIG. 1. Schematic of a RG step. – Eight initial clusters
(dashed squares) interact with each other; those connected by
a resonant path (Γij > ∆Eij) merge into bigger, new clusters
(colored rectangles). The coupling between new clusters are
turned off or renormalized from the previous step (see text).

breaks down as all degrees of freedom resonate.

While finding the true resonances is tantamount to
solving the many-body Hamiltonian, close to the contin-
uous MBLT, one expects a scale-invariant structure in
which resonances are organized hierarchically and can be
constructed iteratively [38]. Since large many-fermion res-
onances will drive the MBLT, it is natural to consider an
effective model in terms of resonant clusters, i.e. groups of
inter-resonating single-particle orbitals, characterized only
by coarse grained information: the effective bandwidth
Λi and typical level spacing δi.

To characterize cluster interactions, we retain only the
typical amplitude Γij of matrix elements for transitions
changing the states of clusters i and j, and compare this
to the corresponding typical energy mismatch ∆Eij be-
tween those states. For Γij � ∆Eij , states of i and j will
resonantly admix, whereas for Γij � ∆Eij , the clusters
will remain decoupled apart from weak virtual dressing.
We divide these regimes sharply and define a resonant
coupling if Γij > ∆Eij . The ambiguity of this partition
becomes unimportant for the large clusters determining
the transition, since both Γij and ∆Eij depend exponen-
tially on fluctuating extensive quantities, and are rarely
comparable.

The RG procedure for a chain of L sites with periodic
boundary conditions proceeds as follows. Initially, each
cluster corresponds to a localized single-particle orbital
with bandwidth Λi = εi ≈ µi (εi the non-interacting
single-particle energy), ∆Eij = |µi − µj |, and Γij =
V (e−|i−j|/x0 + e−|i−j−L|/x0). We set V = 0.3 throughout.
During an RG step, all clusters connected by a path of
resonating bonds are merged into a new cluster {i} →
i′. The coarse grained parameters of the newly formed
cluster are chosen as [44], Λi′ = [

∑
i Λ2

i +
∑
ij Γ2

ij ]
1/2,

δi′ = Λi′/(2
ni′ − 1), and ∆Ei′j′ = δi′δj′/min(Λi′ ,Λj′)

where ni′ is the number of sites in cluster i′.

The effective inter-cluster couplings are changed ac-
cording to two distinct rules, locally mirroring MBL or
ETH behavior (Fig. 1). First, consider two clusters not
modified during a RG step. In isolation, these clusters
would form a small MBL region, with decoupled LIOMs
that project onto the separate states of each cluster. Any
further resonance between these two clusters must be
mediated by other clusters; we can therefore neglect the
direct coupling between them and set Γi′j′ = 0. Second,
if at least one of the clusters is modified during the RG

step, the new coupling between two clusters is [45]

Γi′j′ =

[
max

i1∈{i},i2∈{j}
Γij

]
e−(ni′+nj′−ni1

−ni2
)sth/2. (1)

Here, max Γ selects the strongest resonating pathway. The
exponential factor approximates the resonating clusters as
small locally thermal sub-systems with entropy sth = log 2
per site. This form holds for matrix elements of local
operators in a finite-size, ETH system [9, 45].

The renormalization of inter-cluster couplings are dif-
ferent from those of [37, 38], but have similarities to those
of [46]. The coupling Γij sets the timescale over which
clusters can resonate to change each other’s state. Early
in the RG, resonances are fast and occur directly between
a few strongly coupled sites. Later in the RG, resonances
are more collective and involve many sites. Although the
direct coupling Γij is set to zero if two clusters cannot
resonate at a given time-scale, they can still resonate later,
if mediated via coupling to other clusters [45].

Approximating Γij by the limiting MBL and ETH forms
becomes self-consistently justified since the width of the
distribution of resonance parameters gij = Γij/∆Eij [37,
38, 47] increases with each RG step. In an infinite critical
system, the width of the distribution of g increases with-
out bound along the RG flow so that one asymptotically
encounters only the cases g � 1 (MBL) or g � 1 (ETH)
and almost never faces marginal cases where g ≈ 1. This
flow to infinite randomness of g justifies the RG approxi-
mations in an analogous fashion to other microscopic RG
approaches for quantum phase transitions in disordered
spin chains [30, 48–51].

Rooting the Γij renormalization in well-established
asymptotic properties more accurately captures the com-
petition between locally MBL regions being thermalized
by nearby locally thermal clusters, or isolating them.
These rules cleanly prevent unphysical “avalanche” insta-
bilities of the MBL phase [46, 52] in which an atypically
large resonant cluster becomes increasingly thermal as it
grows, enabling it to thermalize an arbitrarily large MBL
region [53].

The RG terminates if no resonant bonds remain or
the system fully thermalizes. Like [38], our approach
allows for a distribution of various cluster sizes in the
final configuration. This feature is important, as typical
configurations at criticality are predominantly MBL with
few large clusters [38] – a picture supported by recent ED
numerics [34]. In contrast, the approach of [37] allowed
both MBL and thermal blocks (clusters) to grow until the
system is one large block that is either thermal or MBL.

Half-system Entanglement at Criticality – For
each disorder realization, the RG produces a configu-
ration of decoupled locally thermal clusters. We calculate
the entanglement of a subinterval by summing the ther-
mal volume law contribution from each cluster spanning
the interval boundaries. A cluster partitioned into m and
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FIG. 2. Universal scaling of bipartite entanglement
– Normalized bipartite entanglement ŝ(L/2) as a function of
disorder bandwidth W for different system sizes L. Inset: scal-
ing collapse of ŝ(L/2) [upper] and fluctuations σŝ(L/2) [lower],

with Wc = 2.05 and ν = 3.2. Data with L ≤ 1000 have 2.5 ·105

or 106 disorder realizations; those with L ≥ 1500 have 105.
Error-bars were calculated using Jackknife resampling, but
are not shown when smaller than marker sizes.

n sites contributes Sm,n = min(m,n)sth.

Figure 2 depicts the normalized entanglement entropy,
ŝ(x) = S(x, L)/xsth, for x = L/2, where (. . .) denotes
averaging over disorder realizations and interval location.
It shows the transition from a fully thermal system con-
sisting of a single large cluster to the localized system
made from many small clusters, indicated by curves of
different L crossing at critical disorder Wc = 2.05± 0.01.
The curves satisfy a scaling form ŝ = f([W −Wc]L

1/ν),
with critical exponent ν = 3.2± 0.3 (Fig. 2 upper inset).
This indicates the presence of a single diverging correla-
tion length ξ ≈ |W −Wc|−ν . A variety of observables give
the same estimates of Wc and ν and our extracted ν lies
within error-bars of those obtained in [37, 38]. Notably,
we find two distinct values of ν for average and typical
correlation length exponents νtyp ≈ 2.1± 0.2 [45], consis-
tent with a flow to infinite randomness. Together with
the small value ŝ at the crossing, this demonstrates that
the transition is driven by rare thermal clusters separated
by large MBL regions.

Figure 3 shows the full histogram of entanglement over
disorder realizations at Wc. The distribution has a bi-
modal structure consisting of a power-law tail, P (s) ≈ s−α
with α = 1.4 ± 0.2, fit over the interval s ∈ [0.1, 0.8],
and a distinct sharp peak near the fully thermal value
s = 1. Away from criticality, the weight of the thermal
peak scales like a universal function of L/ξ (Fig. 3 inset).
Indications of a bimodal structure were observed in small-
scale ED simulations [54]. Our RG approach allows an
extensive exploration of this structure.

At criticality, the thermal peak gives a volume law con-
tribution to the bipartite entanglement with a coefficient
a = (0.8± 0.3) · 10−2 far below the thermal value. The
power-law component gives a universal sub-leading power-
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FIG. 3. Bipartite entanglement at criticality – Nor-
malized histogram over disorder realizations of the bipartite
entanglement entropy near criticality (W = 2.04), using 100
linearly spaced bins. Inset: scaling collapse of fraction of
fully thermalized configurations Nth/Ntot; error bars are 95%
confidence intervals expected for binomial distribution.

law contribution intermediate between area- and volume
law

S(x = L/2, L,W = Wc) ≈ ax+ bx1−α + . . . (2)

These results differ from those of [37], whose proxy for
half-system entanglement showed a smaller power-law
(P (s) ≈ s−0.9) and lacked a thermal peak.

Non-local influence of system size – Consider next
an infinite system slightly away from the critical point.
Near a conventional continuous phase transition, observ-
ables (including entanglement) measured over distance x
exhibit critical behavior over an extended “critical fan”
x� ξ extending across both sides of the transition. More-
over, they become independent of system size as L→∞,
since critical fluctuations are determined by local physics.
Entanglement at the MBLT departs dramatically from
this conventional behavior, and instead shows a strong
non-local dependence on system size, since an infinite
thermal system can act as a bath for any finite subsystem,
no matter its local properties. Hence, all subintervals of
an infinite system must exhibit fully thermal entangle-
ment ŝ(x, L =∞) = 1 for W < Wc and L� ξ [55]. The
conventional scaling picture would then suggest full ther-
mal entanglement also on the MBL side (W > Wc) for
x� ξ [55]. Instead, ED simulations in [34] give evidence
that this region actually has sub-thermal entanglement,
consistent with the picture of [38] that the critical regime
mainly contains large MBL regions. Together with [55],
this implies that the entanglement jumps discontinuously
from fully thermal to sub-thermal across the MBLT for
L =∞ [34].

Our RG approach can directly demonstrate this pre-
dicted discontinuity by systematically extrapolating to
the limit L → ∞ with x � ξ � L. Figure 4 shows the
normalized entanglement for a fixed interval x = 10 and
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FIG. 4. Infinite system entanglement – The normal-
ized entanglement entropy for an interval x = 10 develops a
non-analytic step on the thermal side of the MBLT as L→∞.
Points labeled +∞ are extrapolations in L, assuming the
leading scaling form ∝ L1/ν along fixed ŝ. Cubic spline inter-
polation was used between data points. The error bars reflect
the uncertainty in ν = 3.2±0.3. The transition Wc = 2.05±0.1
is indicated by the the dashed line and gray shaded region.

various system sizes L. While one can never observe a
true discontinuity in a finite size system, we observe a
clear finite size flow towards a non-analytic jump with
increasing L. Similar L→∞ extrapolations are obtained
for all x.

This discontinuous jump establishes that the entangle-
ment on the MBL side is sub-thermal for all x. How-
ever, many functional forms are consistent with this re-
quirement. Unlike the thermal behavior for L =∞ and
W < Wc, which follows from analytic constraints [55], de-
termining the entanglement scaling for W > Wc requires
a three-fold hierarchy of scales 1� x� ξ � L (Fig. 5).
This necessitates large systems with at least O(103) sites,
making our RG approach uniquely suited to address this
question.

Having an objective measure of the correlation length ξ
is vital to identify the desired scaling regime and separate
it from the distinct crossover behavior when ξ ≈ L. To
this end, we examine the distribution of cluster sizes,
which exhibit power-law decay up a scale that we identify
as ξ, beyond which they decay exponentially [45]. For L�
ξ, the entanglement curves show a small non-universal
rise over x . 1 − 10 and then remain perfectly flat as
x crosses through ξ, indicating that the entanglement
follows a pure area-law everywhere on the MBL side of
the transition, even for x� ξ.

The absence of scaling on the MBL side is particular
to the disorder averaged entanglement, for which critical
fluctuations affect only subleading terms that vanish for
large L. Other observables, like higher moments of entan-
glement can exhibit universal power-law singularities as
W →W+

c . We also note that the discontinuous behavior
of entanglement for L→∞ is special to static eigenstate
properties (equivalently, infinite time averaged quantities).
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FIG. 5. Entanglement finite-size crossover – (a) Entan-
glement entropy as a function of interval size x for system size
L = 1000 and various W > Wc. The error bars correspond to
the vertical thickness of the curves. The black points are lower
bounds on the estimate of ξ taken from the cluster size his-
tograms. (b) Normalized entanglement entropy for L = 4000
for different fractions of system size f = x/L. (c) Plot as in
(a) zoomed out for disorder values W = 1.4 (yellow, linear
volume law) and 1.96 ≤W ≤ 2.3 in steps of 0.02.

In contrast, due to the logarithmic causal-cone for dy-
namics at the MBLT [37, 38], dynamical measurements
on timescales log t� L are insensitive to the system size,
and will exhibit a more conventional critical scaling fan.

Full scaling form of S(x, L,W ) – For infinite systems,
we have seen that the entanglement jumps discontinuously
at the MBLT. For finite L, this jump becomes a smooth
crossover. What universal data can we extract from this
crossover? The entanglement is itself generically not a
scaling variable. In addition to non-universal, sub-leading
terms, different parts of the entanglement may be univer-
sal for different critical points; identifying an appropriate
scaling form is not straightforward. For example, in 1D
conformal field theories one needs to consider ∂S/∂ log x
in the limit x, L� 1 [56, 57].

By performing scaling collapses of S(x, L) for fixed x/L
and various W [45], we find evidence that the volume law
coefficient is a universal scaling function

ŝ(x, L) =
S(x, L)

xsth
= A

(
x

ξ
,
L

ξ
, sgn δW

)
+ (. . . ). (3)

Here (. . . ) indicates sub-leading corrections in x and L
that vanish in the scaling limit x, L � 1. The scaled
form as the function of the variables x/L,L/ξ sgn δW is
shown in Fig. 5b. At finite L, the above scaling form with
a single universal exponent ν is relatively conventional.
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The large L limit, however, is different from the scaling
of convention correlation functions. The non-local system
size dependence shown above, implies that in the limit
L/ξ → ∞, A depends only on sgn δW ; there is absolut-
ley no dependence on x/ξ. The striking discrepancy in
scaling highlights the unusual and asymmetric nature of
thermalization and the MBL transition.
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[23] M. Serbyn, Z. Papić, and D. A. Abanin, Phys. Rev. Lett.
110, 260601 (2013).

[24] M. Serbyn, M. Knap, S. Gopalakrishnan, Z. Papić, N. Y.
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