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Physical implementations of quantum annealing unavoidably operate at finite temperatures. We
point to a fundamental limitation of fixed finite temperature quantum annealers that prevents them
from functioning as competitive scalable optimizers and show that to serve as optimizers annealer
temperatures must be appropriately scaled down with problem size. We derive a temperature scaling
law dictating that temperature must drop at the very least in a logarithmic manner but also possibly
as a power law with problem size. We corroborate our results by experiment and simulations and
discuss the implications of these to practical annealers.

Introduction.— Quantum computing devices are be-
coming sufficiently large to undertake computational
tasks that are infeasible using classical computing [1–
7]. The theoretical underpinning for whether such tasks
exist with physically realizable quantum annealers re-
mains lacking, despite the excitement brought on by re-
cent technological breakthroughs that have made pro-
grammable quantum annealing (QA) [8–12] optimizers
consisting of thousands of quantum bits commercially
available. Thus far, no examples of practical relevance
have been found to indicate a superiority of QA opti-
mization, i.e., to find bit assignments that minimize the
energy, or cost, of discrete combinatorial optimization
problems, faster than possible classically [13–20]. Ma-
jor ongoing efforts continue to build larger, more densely
connected QA devices, in the hope that the capability
to embed larger optimization problems would eventually
reveal the coveted quantum speedup [21–25].

Understanding the robustness of QA optimization to
errors that reduce the final ground state probability is
critical. In this work, we consider perhaps the most op-
timistic setting where the only source of error is due to
nonzero temperature. We analyze the theoretical scaling
performance of ideal fixed-temperature quantum anneal-
ers for optimization. We show that even in the case where
annealers are assumed to thermalize instantly (rather
than only in the infinite runtime limit), the energies, or
costs, of their output configurations would be computa-
tionally trivial to achieve (in a sense that we explain).
We further derive a scaling law for QA optimizers and
provide corroboration of our analytical findings by ex-
perimental results obtained from the commercial D-Wave
2X QA processor [26–30] as well as numerical simulations
(our results equally apply to ideal thermal annealing de-
vices). We discuss the implications of our results for both
past benchmarking studies and for the engineering re-
quirements of future QA devices.

Fixed-temperature quantum annealers.— In the
adiabatic limit, closed-system quantum annealers are
guaranteed to find a ground state of the target cost func-

tion, or final Hamiltonian H, they are to solve. The adi-
abatic theorem of quantum mechanics ensures that the
overlap of the final state of the system with the ground
state manifold of H, approaches unity as the duration
of the process increases [31, 32]. For physical quantum
annealers that operate at positive temperatures (T > 0),
there is no equivalent guarantee of reaching the ground
state with high probability. For long runtimes, an ideal
finite-temperature quantum annealer is expected to sam-
ple the Boltzmann distribution of the final Hamiltonian
at the annealer temperature [33].

In what follows, we argue that even instantly-
thermalizing quantum annealers [34] are severely limited
as optimizers due to their finite temperature. For con-
creteness, we restrict to annealers for which i) the num-
ber of couplers scales linearly with the number of qubits
N [35], ii) the coupling strengths are discretized and are
bounded independently of problem size, and iii) the scal-
ing of the free energy with problem size is not patholog-
ical, i.e., that our system is not tuned to a critical point.
Other than the above standard assumptions, our treat-
ment is general (we discuss the performance of quantum
annealers when some of these conditions are lifted later
on). For clarity, we consider optimization problems writ-
ten in terms of a Hamiltonian of the Ising-type

H =
∑
〈ij〉

Jijsisj +
∑
i

hisi , (1)

where {si = ±1} are binary Ising spin variables that are
to be optimized over, {Jij , hi} are the coupling strengths
between connected spins and external biases, respec-
tively, and 〈ij〉 denotes the underlying connectivity graph
of the model. The discussion that follows however is not
restricted to any particular model.

Under the above assumptions, the ground state ener-
gies, denoted E0, of any given problem class, scale lin-
early with increasing problem size (i.e., the energy is an
extensive property as is generically expected from physi-
cal systems) while the classical minimal gap ∆ = E1−E0
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remains fixed. It follows then [36] that the thermal ex-
pectation values of the intensive energy

〈e〉β = 〈H〉β/N , (2)

and specific heat

cβ = ∂〈e〉β/∂β = −N
[
〈e2〉β − 〈e〉2β

]
, (3)

remain finite as N → ∞ for any fixed inverse-
temperature β = 1/T . The intensive energy is discretized
in steps of ∆/N , yet its statistical dispersion σβ(e) =√
−cβ/N is much larger. Treating e as a stochastic vari-

able, for large enough values of N it can be treated as
a continuous variable as the ratio of discretization ver-
sus dispersion is

√
−∆2/(cβN) decaying to zero for large

N . From the Boltzmann distribution it follows that the
probability density of e goes as pβ(e) = Zβ

−1eN(s(e)−βe) ,
where Zβ =

∑
n gne−βEn is the partition function, gn is

the degeneracy of the n-th level, i.e., the number of mi-
crostates with H({si}) = En, satisfying 2n =

∑
n≥0 gn,

and s(e) is the entropy density [37]. The linear combina-
tion Ψβ(e) = s(e)−βe plays the role of a large-deviations
functional for e. The most probable value of e, which we
denote by e∗, is given by the maximum of Ψβ . Solving
Ψ′β(e∗) = 0, we find [38]

β =
∂s

∂e

∣∣∣∣
e=e∗

. (4)

Close to e∗, Ψβ can be Taylor-expanded as Ψβ(e) ≈
Ψβ(e∗)− |Ψ

′′
β (e∗)|
2 (e− e∗)2, from which it follows that

pβ(e) ≈ eNΨβ(e∗)

Zβ
exp

[
−
N |Ψ′′β(e∗)|

2
(e− e∗)2

]
. (5)

The probability density is thus approximately Gaussian
in the vicinity of e∗, although deviations from the Gaus-
sian behavior are crucial [39]. Moreover, in the limit of
large N , we find

〈e〉β = e∗ and cβ =
−1

|Ψ′′β(e∗)|
. (6)

Therefore, the probability of finding by Boltzmann-
sampling any energy e < e∗ (equivalently, E < e∗N)
is exponentially suppressed in N , scaling in fact as
exp[−N( Ψβ(e∗)−Ψβ(e) )]. We thus arrive at the conclu-
sion that even ideal fixed temperature quantum annealers
that thermalize instantaneously to the Gibbs state of the
classical Hamiltonian are exponentially unlikely to find
the ground state since e∗ > e0 ≡ E0/N .

We now corroborate the above derivation by runs on
the commercial DW2X quantum annealer [26–29]. To
do so, we first generate random instances of differently
sized sub-graphs of the DW2X Chimera connectivity
graph [40, 41] and run them multiple times on the an-
nealer, recording the obtained energies [42]. Figure 1

depicts typical resultant residual energy (E − E0) dis-
tributions. As is evident, increasing the problem size N
‘pushes’ the energy distribution farther away from E0, as
well as broadening the distribution and making it more
gaussian-like. In the inset, we measure the departure
of 〈H〉β from E0 and the spread of the energies σβ(H)
over 100 ‘planted-solution’ [18] instances per sub-graph
size as a function of problem size N [43]. For sufficiently
large problem sizes, we find that the scaling of 〈H−E0〉β
is close to linear while σβ(H) scales slightly faster than√
N . While the slight deviations from our analytical

predictions suggest that the DW2X configurations have
not fully reached asymptotic behavior[44], they exhibit
a trend that closely matches our assumptions with the
agreement getting better with growing problem sizes.

FIG. 1. Distributions of residual energy, E − E0, from
DW2X runs. As problem sizes grow, the distributions be-
come more Gaussian-like. Inset: Gaussians’ mean (blue) and
standard deviation (red) as a function of problem size, aver-
aged over 100 instances per size. The solid lines correspond
to power-law fits of the average mean with power 0.98 ± 0.14
and average standard deviation scaling with power 0.63±0.09,
taking into accounts all sizes but the smallest (1.01±0.62 and
0.57± 0.37 respectively if the two smallest sizes are omitted).

Given the scaling of the mean and standard deviation,
we conclude that fixed-temperature quantum annealers
will generate energies e with a fixed distance from e0,
or in terms of extensive energies, configurations obtained
from fixed-temperature annealers will have energies con-
centrated around E = (1 − ε)E0 for some ε > 0 and
E0 < 0.

One could now ask what the difficulty is for classical
algorithms to generate energy values in the above
range. This question has been recently answered by the
discovery of a polynomial time approximation scheme
(PTAS) for spin-glasses defined on a Chimera graph
[45] (and which can be easily generalized to any locally
connected model), where reaching such energies can be
done efficiently [46]. While the scaling of the PTAS with
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ε is not favorable, scaling as c1/ε for some constant c, in
practice there exist algorithms (e.g., parallel tempering
that we discuss later on) that are known to scale more
favorably than PTAS.
Scaling law for quantum annealing
temperatures.— In light of the above, it may
seem that quantum annealers are doomed to fail as
optimizers as problem sizes increase. We now argue
that success may be regained if the temperature of
the QA device is appropriately scaled with problem
size. Specifically, we address the question of how the
inverse-temperature β should scale with N such that
there is a probability of at least q of finding the ground
state.

An estimate for the required scaling can be given as
follows. From the above analysis, it should be clear that
the probability of finding a ground state at inverse tem-
perature β will not decay exponentially with system size
only if the ground state falls within the variation of the
mean energy, specifically if

σβ(H) = Nσβ(e) =
√
−Ncβ , (7)

is comparable to

〈H〉β − E0 = −N
∫ ∞
β

dβ cβ . (8)

The third law of thermodynamics dictates that the spe-
cific heat cT ≡ d〈e〉/dT goes to zero when T → 0. As-
suming a scaling of the form cT ∼ Tα, or equivalently,
−cβ ∼ β−α−2, gives

σβ(H) ∼

√
N

βα+2
and 〈H〉β − E0 =

N

βα+1
. (9)

For a power-law specific heat, it thus follows that the
sought scaling is β ∼ N1/α. If on the other hand cβ van-
ishes exponentially in β, the inverse-temperature scaling
will be milder, of the form β ∼ logN .

To illustrate the above, we next present an analysis of
simulations of randomly generated instances on Chimera
lattices (we study several problem classes and architec-
tures, see the Supplemental Information). To study the
energy distribution generated by a thermal sampler on
these instances, we use parallel tempering (PT) [47, 48],
a Monte Carlo method whereby multiple copies of the
system at different temperatures are simulated [49]. In
Fig. 2, we show an example of how the energy distribu-
tion of a planted-solution instance changes with β. The
qualitative behavior is similar to what we observe with
increasing problem size, whereby decreasing β (increas-
ing the temperature) pushes the energy distribution to
larger energies and makes it more gaussian-like.

The behavior of the specific heat cβ as the inverse-
temperature β becomes large is shown in Fig. 3. At large
sizes, the scaling becomes cβ ∝ exp(−∆β) as expected

FIG. 2. Distributions of residual energy, E − E0, from
PT simulations. For a planted-solution instance defined on
an L = 12 Chimera graph, the distributions become more
Gaussian-like as β decreases. For the case of β = 0.75, the
mean residual energy and standard deviation are indicated.
Inset: Scaling with problem size of the median mean energy
and median standard deviation of the energy for β = 1.47
over 100 instances.

(here, ∆ = 4 is the gap). Based on our predictions above,
this should mean that if for a fixed q, the minimum β∗

such that pβ∗(E0) ≥ q falls in this exponential regime,
then we should observe a scaling β∗ ∝ logN . Indeed,
the inset of Fig. 3, which shows simulation results of β∗

versus N , exhibits the expected logN behavior [50].
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FIG. 3. Typical specific heat with inverse-
temperature. Behavior of the median specific heat (over
100 instances) for planted-solution instances with inverse-
temperature β for N = 3872. The behavior transitions from
a polynomial scaling with β to an exponential scaling. In-
set: Typical minimum inverse-temperature required for in-
stances of size N such that the probability of the target en-
ergy ET = E0 + δ(N) is at least q = 10−1. Also shown are
fits to logN for all three cases and a power-law fit to cNα

that finds α = 0.19 ± 0.05 for the δ = 0 case, which is almost
indistinguishable from the logarithmic fit.
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While for problem classes with a fixed minimum gap
∆, one may naively expect cβ to vanish exponentially
in general, implying that a logarithmic scaling of β will
generally be sufficient as our simulations indeed indicate,
it is important to note that two-dimensional spin glasses
are known to exhibit a crossover between an exponential
behavior to a power law [51–54]. This crossover is charac-
terized by a constant θ ≈ 1/2, whereby the discreteness
of the gap ∆ is evident only for sizes Nθ/2 � β. Be-
yond Nθ/2 ∼ β, the 2d system behaves as if the coupling
distribution is continuous [52, 53] at which point the sys-
tem can be treated as if with continuous couplings, for
which the specific heat cT scales as Tα with αc = 2ν [51],
where ν = 3.53(7) [54]. Therefore, for an ideal quan-
tum annealer operating beyond the crossover, a scaling
of β ∼ N1/(2ν)≈0.14 is required. We may thus expect
the same crossover to appear for instances defined on
the Chimera lattice, which is 2d-like. Interestingly, for
the temperature scaling shown in the inset of Fig. 3, a
power-law fit β ∼ Nα with α = 0.19 ± 0.05 is almost
indistinguishable from the logarithmic one, with a power
that is consistent with the 2d prediction.

Suboptimal metrics for optimization
problems.— For many classically intractable opti-
mization problems, when formulated as Ising models,
it is crucial that solvers find a true minimizing bit
assignment rather than low lying excited states. This
is especially true for NP-complete/hard problems [55]
where sub-optimal costs generally correspond to violated
constraints that must be satisfied (otherwise the resul-
tant configuration is nonsensical despite its low energy).
Nonetheless, it is plausible to assume the existence of
problems for which slightly sub-optimal configurations
would still be of value [56]. We thus also study the
necessary temperature scaling for cases where the target
energies obey ET ≤ E0 + δ(N) with δ(N) scaling
sub-linearly with problem size. In the inset of Fig. 3,
we plot the required scaling of β for δ(N) = const and
δ(N) ∝

√
N . In both cases we find that a logarithmic

scaling is still essential, albeit with smaller prefactors.

Conclusions and discussion.— We have shown that
fixed temperature quantum annealers can only sample
‘easily reachable’ energies in the large problem size limit,
thereby posing fundamental limitation on their perfor-
mance. We derived a temperature scaling law to ensure
that quantum annealing optimizers find nontrivial energy
values with sub-exponential probabilities. The scaling of
the specific heat with temperature controls this scaling:
if β lies in the regime where the specific heat scales ex-
ponentially with β, then the inverse-temperature of the
annealer must scale as logN . However, further consider-
ations are needed because of a possible crossover behav-
ior in the specific heat with temperature and problem
size. For Chimera graphs, because of their essentially
two-dimensional structure, this may lead to a crossover
to power law scaling. Little is known about this crossover

in three dimensions or for different architectures, so this
concern may not be mitigated by a more complex con-
nectivity graph.

Our results shed important light on benchmarking
studies that have found no quantum speedups [17, 18, 57–
59], identifying temperature as a relevant culprit for their
unfavorable performance. Our analysis is particularly
relevant for both the utility as well as the design of future
QA devices that have been argued to sample from ther-
mal or close-to-thermal distributions [60], calling their
role as optimization devices into question.

One approach to scaling down the temperature with
problem size is the (theoretically) equivalent scaling up
of the overall energy scale of the Hamiltonian. However,
the rescaling of the total Hamiltonian is also known to
be challenging and may not represent a convenient ap-
proach for a scalable architecture. An alternative ap-
proach is to develop quantum error correction techniques
to effectively increase the energy scale of the Hamilto-
nian by coupling multiple qubits to form a single log-
ical qubit [61–66] in conjunction with classical post-
processing [67–70] or to effectively decouple the system
from the environment [71–74].

Our results reiterate the need for fault-tolerant error
correction for scalable quantum annealing, however they
do not preclude the utility of quantum annealing opti-
mizers for large finite size problems, where engineering
challenges may be overcome to allow the device to op-
erate effectively at a sufficiently low temperature such
that problems of interest of a finite size may be solved
even in the absence of fault-tolerance. Our results only
indicate that this ‘window of opportunity’ cannot be ex-
pected to continue as devices are scaled without further
improvements in the device temperature or energy scale.

While our arguments above indicate that fixed-
temperature quantum annealers may not be scalable as
optimizers, the current study does not pertain to the us-
age of quantum annealers as samplers [60, 75, 76], where
the objective is to sample from the Boltzmann distribu-
tion. The latter objective is known to be very difficult
task (it is #P-hard [77–79]) and little is known about
when or if quantum annealers can provide an advantage
in this regard [80].
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