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Half-metallicity (full spin polarization of the Fermi surface) usually occurs in strongly correlated
electron systems. We demonstrate that doping a spin-density wave insulator in the weak-coupling
regime may also stabilize half-metallic states. In the absence of doping, the spin-density wave is
formed by four nested bands [i.e., each band is characterized by charge (electron/hole) and spin
(up/down) labels]. Of these four bands, only two accumulate the charge carriers introduced by
doping, forming a half-metallic two-valley Fermi surface. Depending on parameters, the spin po-
larizations of the electron-like and hole-like valleys may be either (i) parallel or (ii) antiparallel.
The Fermi surface of (i) is fully spin-polarized (similar to usual half-metals). Case (ii), referred to
as “a spin-valley half-metal”, corresponds to complete polarization with respect to the spin-valley
operator. The properties of these states are discussed.

PACS numbers: 75.10.Lp, 75.50.Ee, 75.50.Cc

Introduction.— Half-metallicity [1–3] is a useful prop-
erty for spintronics applications. Unlike usual metals,
which have both spin projections (spin-up and spin-
down) on the Fermi surface, half-metallicity implies that
electrons with only one spin projection, for example,
spin-up, reach the Fermi level, while spin-down states
are pushed away from the Fermi energy. A highly de-
sirable consequence [3, 4] of half-metallicity is the per-
fect spin-polarization of the current. Experiments con-
firmed that many real materials are half-metals. For
example, NiMnSb [5], (La0.7Sr0.3)MnO3 [6], CrO2 [7],
Co2MnSi [8], and others. From the theory standpoint,
the half-metallicity of these compounds relies on sizable
electron-electron interactions, associated with transition-
metal atoms. However, in recent years, the search for
‘metal-free half-metals’ began [9, 10]. Such systems could
be useful for bio-compatible applications, and, in general,
are consistent with current interest in carbon-based and
organic-based mesoscopic systems [11–16]. It is difficult
to expect a strong electron-electron interaction for sys-
tems composed entirely of s- and p-elements. Thus, dif-
ferent mechanisms for half-metallicity must be looked for.
In this paper, we discuss a novel possibility to generate
half-metallicity. Specifically, we demonstrate that dop-
ing a spin-density wave (SDW) or charge-density wave
(CDW) insulator may stabilize a certain type of half-
metallic state. Let the undoped system [see Fig. 1(a)]
have two nested Fermi surface sheets, which we will also
refer to as valleys. Let one sheet, or valley, correspond to
electron states, and another to hole states. Both valleys
are spin-degenerate. The SDW or CDW instability opens
a gap generating an insulating ground state, Fig. 1(b).
We show that, when doping is introduced, each valley

becomes half-metallic. If the spin polarizations of both
sheets are parallel to each other, Fig. 1(c), a half-metallic
state, called below CDW half-metal, emerges. For an-
tiparallel polarizations, Fig. 1(d), a different half-metallic
state, spin-valley half-metal, appears. The properties of
these two states are discussed below.
Model.— Our model describes two bands, or valleys:

an electronic band a and a hole band b, shown as blue
and red parabolas in Fig. 1(a), with the following single-
particle dispersions (~ = 1)

εa(k) =
k2

2ma

+ εamin − µ, εamin < εa < εamax, (1)

εb(k +Q0) = − k2

2mb

+ εbmax − µ, εbmin < εb < εbmax.(2)

Here band a is centered at k = 0, and band b at some
finite momentum Q0. Below, for simplicity, we assume
the perfect electron-hole symmetry: ma = mb = m and
εbmax = −εamin = εF, consequently, εa(k) = −εb(k +
Q0) = εk. Zero doping corresponds to µ = 0. Undoped
Fermi surface sheets for the a and b bands are charac-
terized by a single Fermi momentum kF =

√
2mεF, and

density of states (per spin projection) NF = mkF/(2π
2)

at the Fermi energy. This provides a perfect nesting: a
translation of the electron Fermi surface by the vectorQ0

completely superpose the sheets. The total Hamiltonian
is equal to

Ĥ = Ĥe + Ĥint , (3)

where Ĥe is the single-electron term, described by the
dispersions (1) and (2), while Ĥint corresponds to the
interaction between quasiparticles.
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FIG. 1: The electron bands and spin structure for differ-
ent dopings x [vertical (horizontal) axis is energy (momen-
tum), the Fermi level µ is shown by horizontal dash-dot lines].
Panel (a): non-interacting bands at x = 0. The bands are
shown by solid curves, the dashed parabola is the hole band
translated by the nesting vector Q0. Panels (b)–(d): the
interaction is taken into account; (b) if x = 0, the ground
state is an insulating SDW or CDW, with degenerate sectors

(∆↑ ≡ ∆↓), with electron bands E
(1,2)
σ given by Eq. (9). For

(c) and (d): if x > 0, the sectors are no longer degenerate
(∆↑ < µ < ∆↓ ≡ ∆0), with the charge accumulating in sector
“↑”, in which a Fermi surface opens. The spin polarizations
(arrows) of the Fermi surface sheets correspond to (c) the
CDW half-metal and to (d) the spin-valley half-metal.

To treat the SDW instability, it is sufficient to keep
in Hint only the interaction between electrons in the a
and b bands. We also assume that the interaction is a
short-range one. Let us initially focus on the following
interaction term (the neglected term will be discussed
later)

Ĥint=g

∫

d3r
∑

σσ′

ψ†
aσ(r)ψaσ(r)ψ

†
bσ′(r)ψbσ′(r) . (4)

Here, ψασ denotes the usual fermionic field operator for
band α and spin σ; symbol r refers to spatial coordinates.
The interaction is repulsive (g > 0) and weak (gNF ≪ 1).

Spin-valley half-metal.— When the Fermi surface
sheets of the holes and the electrons perfectly match each
other, model (3) describes the spontaneous formation of
SDW or CDW orders. We start with the SDW. The SDW
ground state is believed to be unique (up to rotations of
the spin-polarization axis), and well described by a BCS-
like theory. The electron operators can be grouped into
two sectors, labeled by the index σ = ±1: sector σ con-
sists of ψaσ and ψbσ̄ (here σ̄ means−σ). In the mean-field
approach, the sectors are decoupled and the SDW order

parameter can be written as

∆σ =
g

V

∑

k

〈

ψ†
kaσ ψkbσ̄

〉

, (5)

where V is the system volume, and 〈. . .〉 denotes the di-
agonal matrix element for the ground state. At zero dop-
ing, the sectors are degenerate: ∆↑ = ∆↓ = ∆0, where
∆0 ≈ εF exp (−1/gNF) is the order parameter at perfect
nesting [see Fig. 1(b)]. This equality implies that the
SDW polarization in real space is directed along the x
axis

〈Sx(r)〉 =
∆↑ +∆↓

g
cos(Q0r) =

2∆0

g
cos(Q0r) , (6)

〈Sy(r)〉 =
∆↑ −∆↓

2g
sin(Q0r) ≡ 0 . (7)

Doping destroys the perfect nesting, and the number of
low-energy states competing to become the true ground
state increases. Both incommensurate and inhomoge-
neous phases [17–25] were considered for Hamiltonian (3)
and its modifications. Here we argue that the half-
metallic state is yet another viable contender in the case
of imperfect nesting.
The grand potential of our system Ω at zero temper-

ature and finite doping x is a sum of two partial grand
potentials Ω =

∑

σ Ωσ, where

Ωσ=
∆2

σV

g
−
∑

k

[

µ− E
(1)
kσ +

(

µ− E
(2)
kσ

)

θ
(

µ− E
(2)
kσ

)]

, (8)

E
(1,2)
kσ = ∓

√

ε2k +∆2
σ, θ(z) is the step-function. (9)

To describe doping it is convenient to introduce the par-
tial dopings xσ = −∂Ωσ/∂µ, which are the amounts of
charge accumulated in sectors σ. Parameter ∆σ mini-
mizes Ωσ(∆σ). Thus, one has to solve

∂Ωσ

∂∆σ

= 0, x↑ + x↓ = x, (10)

to determine µ and ∆σ. Equations (8,10) are valid pro-
vided that the state remains homogeneous, and the SDW
order remains commensurate even at finite doping.
Since the two sectors σ are decoupled, one can calcu-

late [18, 25, 26] parameters ∆σ and µ as functions of xσ

∆σ = ∆0

√

1− xσ
NF∆0

, and µ = ∆0 −
xσ
2NF

. (11)

We see that the doping destroys ordered state, and the
homogeneous commensurate state becomes completely
unstable for xσ > xc = NF∆0.
It is often implicitly assumed (e.g., Refs. [17, 25, 26])

that the charge carriers are spread evenly between both
sectors (x↑ = x↓), and the degeneracy of ∆σ persists even
for finite x. Yet, it is easy to show that the spontaneous
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lifting of this degeneracy optimizes the energy. To prove
this, consider the system free energy F =

∑

σ Fσ, where
the partial free energy Fσ = Ωσ + µxσ can be calculated
as Fσ(xσ) = Fσ(0) +

∫ xσ

0 dx′µ(x′), to obtain

F

V
=

∑

σ

Fσ

V
= −NF∆

2
0 +∆0x−

x2↑ + x2↓
4NF

, (12)

where we took into account that Fσ(0) = −NF∆
2
0/2.

Only the third term in Eq. (12) depends on the distri-
bution of the charge among the two sectors. It is easy
to check that, if xσ = x and xσ̄ = 0, the third term, to-
gether with F , is the smallest. In other words, for fixed
x, the most stable spatially homogeneous state of the
model corresponds to the case when all the doped charge
is accumulated in a given sector. The other sector is
completely free of the extra charge carriers. Therefore,

F

V
= −NF∆

2
0 +∆0x− x2

4NF
, (13)

µ = ∆0 −
x

2NF
, (14)

∆σ(x) = ∆0

√

1− x

NF∆0
, ∆σ̄(x) = ∆0. (15)

These relations are valid for not too strong doping x <
NF∆0. An important feature of Eq. (13) is that the sec-
ond derivative ∂2F/∂x2 is negative. This means that
the doped system is unstable with respect to electronic
phase separation [18, 22, 23, 26–30]. However, the long-
range Coulomb interaction can suppress the phase sepa-
ration [31, 32]. Thus, it is reasonable to study the prop-
erties of the homogeneous state [33].
It follows from Eqs. (14,15) that ∆σ(x) < µ(x) <

∆σ̄(x) = ∆0, when x > 0. This means that in the sec-
tor σ̄, the order parameter remains equal to ∆0. Since
the chemical potential is lower than ∆σ̄, no charge en-
ters sector σ̄, see Fig. 1(d). In the sector σ, two Fermi
surface sheets emerge. They are fixed by the equa-
tion ε2k = [µ(x)]2 − [∆σ(x)]

2, which is equivalent to
εk = ±x/2NF. As the doped charges are distributed
unevenly between the sectors, the doped state acquires
non-trivial macroscopic quantum numbers. To char-
acterize the macroscopic state, it is useful to specify
spin operator Ŝ =

∑

ασ σN̂ασ, and spin-valley operator

Ŝv =
∑

ασ σvαN̂ασ, where α = a, b, is the valley label,
and vα is defined as: va = 1, vb = −1. The opera-
tor N̂ασ =

∑

k ψ
†
kασ ψkασ corresponds to the number of

electrons with spin σ in valley α. The Hamiltonian (3)
commutes with both Ŝ and Ŝv. The field operators sat-
isfy obvious commutation rules [Ŝ, ψασ] = σψασ , and
[Ŝv, ψασ] = σvαψασ. Namely, in addition to the spin
quantum number σ, a field ψασ can be characterized by
the spin-valley projection σvα.
It is easy to check that in the sector σ both ψaσ and

ψbσ̄ carry the same spin-valley quantum equal to +σ.

In the sector σ̄, the field operators correspond to a −σ
quantum of Ŝv. That is, the Fermi surface of the doped
system is characterized by the single projection of the
spin-valley operator. The Fermi surface sheets with the
opposite projection of Ŝv are absent, since the sector σ̄
is gapped. Thus, the doped system can be referred to as
a spin-valley half-metal : like a classical half-metal, our
system exhibits complete polarization of the Fermi sur-
face; however, in contrast to the usual half-metal, the
polarization is not the spin polarization, but rather, the
spin-valley one. Therefore, the electric current through
the spin-valley half-metal is completely spin-valley polar-
ized.

Since the sector σ̄ is free of doped electrons, the average
values of N̂aσ̄ and N̂bσ remain unaffected by the doping,
while 〈N̂aσ〉 and 〈N̂bσ̄〉 change. Taking the average occu-
pation numbers Nασ = 〈N̂ασ〉 in the undoped state to be
zero, we can write Naσ̄ = Nbσ = 0, and Naσ+Nbσ̄ = xV .
Consequently, Sv = 〈Ŝv〉 is proportional to x. Namely,
Sv = σxV . In a system with perfect electron-hole sym-
metry, we have Naσ = Nbσ̄ = xV/2, which corresponds
to S = 〈Ŝ〉 ≡ 0, for any x. If the symmetry is absent,
then |S| ∝ x. However, the net spin polarization of the
spin-valley half-metal satisfies the inequality |S| < |Sv|.
Doping also affects the SDW order inherited from the

undoped state. Intuitively, since the charge enters only
one of the two sectors, the symmetry between sectors σ
disappears for x > 0. [Eqs. (15) prove this.] The simple
SDW is replaced by a more complicated order param-
eter: analyzing Eqs. (6,7) one can prove that, at finite
doping, a circularly-polarized spin component emerges
{δSx(r), δSy(r)} ∝ (∆↑ − ∆↓){cos(Q0r), sin(Q0r)}. The
amplitude of this component increases when x grows.

From spin-valley half-metal to CDW half-metal.— In
addition to the expected invariance with respect to simul-
taneous rotations of all fermion spins, our model Hamil-
tonian allows for a broader class of symmetries: it re-
mains unchanged, even if the electron and hole spins are
transformed by two different rotation operators. This
observation can be trivially proven in the absence of in-
teraction (g = 0). In the case of a generic interaction, this
symmetry does not apply. However, if the interaction is
short-range, as in Eq. (4), the invariance of the Hamil-
tonian under such transformations remains. Indeed, the
integrand in Eq. (4) is ∝ ρeρh, where ρe and ρh are the
density operators for electrons and holes, which both are
invariant under separate rotations of the electron and
hole spins. Therefore, the substitution

ψb↑ → ψb↓, ψb↓ → ψb↑ (16)

corresponds to a symmetry of the model. Thus, Eq. (16)
either preserves the ground state, or transforms one
ground state into another one. Since the order parame-
ter, Eq. (5), changes under the transformation (16), we
must conclude that a new ground state is generated by
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such a substitution. If we start with the spin-valley half-
metal ground state, what kind of new state the transfor-
mation (16) brings us?

Consider the SDW polarization, Eq. (6), at zero dop-
ing. Under the transformation (16) the SDW is replaced
by a CDW with a finite average value for the density op-
erator ρ̂Q0

: 〈Ŝx
Q0

〉=∑

σ〈ψ
†
kaσψkbσ̄〉 →

∑

σ〈ψ
†
kaσψkbσ〉=

〈ρ̂Q0
〉. Calculations identical (up to relabeling) to the

case of the SDW order demonstrate that for x > 0 the
charge carriers accumulate in a single mean-field sector.
However, the sector composition is changed by the trans-
formation (16): sector σ consists of ψaσ and ψbσ. Unlike
the case of spin-valley half-metals, now both electronic
fields within a single sector have the same spin projection.
Therefore, if the doped charge enters sector σ, both Fermi
surface sheets have identical spin polarizations equal to
σ, see Fig. 1(c). This perfect polarization of the Fermi
surface is a hallmark feature of half-metals. Thus, the
spin-valley half-metal is related to the CDW half-metal
by the substitution (16), and both states are degenerate
within our model. This relation becomes apparent if we
notice that (16) switches the operators Ŝ and Ŝv. Conse-
quently, in the CDW half-metal S = σxV and |Sv| < |S|.
When x > 0, in addition to the CDW order parameter,
the SDW order parameter 〈Sz

Q0
〉 is generated. It grows

monotonously with x.

Note, however, that the degeneracy between the SDW
and CDW ground states is an artifact of the short-range
interaction, Eq. (4), which possesses extra symmetries
absent in more realistic models. The effects of more
generic interaction operators are discussed below.

Discussion.— While the mechanism presented here
is quite general, and may be relevant to any material
with nesting-driven density wave, below we will overview
some extensions of the model, which may affect the pro-
posed half-metallic states. Specifically, the interaction
Eq. (4) is not the most general form of electron-electron
coupling. In particular, the “exchange” term Ĥex =
g⊥

∫

d3x
∑

σσ′ ψ†
aσψbσψ

†
bσ′ψaσ′ should be accounted for.

The coupling constant g⊥ > 0 describes a repulsive in-
teraction at finite momentum Q0. The “exchange” term
Ĥex immediately lifts the degeneracy between the SDW
and CDW, in favor of SDW. This means that, for fi-
nite doping, the spin-valley half-metal is more stable than
the CDW half-metal. Also, other factors could favor the
CDW half-metal; for example, the proximity to a lat-
tice instability. An external magnetic field acts similarly,
since the total spin of the CDW half-metal exceeds the
spin of the spin-valley half-metal.

We assumed that the Coulomb interaction guarantees
the homogeneity of the electron liquid. Thus, in the
above discussion, we neglected the possibility of phase
separation. In addition, the incommensurate SDW states
were not considered. While the detailed study of such
states is an interesting goal for future research, we do
not expect that this modification would affect signifi-
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FIG. 2: Dependence of ∆F ic
0 (xσ, x−xσ) ≡ F ic

0 (xσ)+F ic
0 (x−

xσ)−2F ic
0 (x/2) on the partial doping xσ, calculated at T = 0

and fixed total doping x = 1.4NF∆0 [(red) solid curve], x =
1.76NF∆0 [(green) dashed curve], and x = 2.0NF∆0 [(blue)
dash-dot curve].

cantly the stability of the half-metallic phases, at least at
some doping range. Indeed, at the mean-field level the
free energy in the presence of the incommensurate SDW
equals F ic(x) = minx↑+x↓=x

[

F ic
0 (x↑) + F ic

0 (x↓)
]

, where
F ic
0 (xσ) is the free energy of a sector with partial dop-

ing xσ. As above, the free energy of the system is found
by minimization under the condition x↑ + x↓ = x. We
calculated F ic

0 (xσ) numerically, as described in Ref. [26].
Our analysis shows that ∂2F ic

0 (xσ)/∂x
2
σ < 0 for xσ less

than the threshold value x∗ ∼= 0.83NF∆0. This is a
rather general feature of a system with imperfect nest-
ing [18, 22, 23, 26, 30]. Since the second derivative of F ic

0

is negative, the sum F ic
0 (x↑) + F ic

0 (x − x↑) as a function
of x↑ ∈ [0, x] is concave. Consequently, the extremum of
the latter sum at x↑ = x/2 corresponds to a maximum,
not a minimum (see Fig. 2). Therefore, the total free
energy is minimized as follows: F ic(x) = F ic

0 (x)+F ic
0 (0),

at xσ = x, and xσ̄ = 0. Thus, the undoped sector σ̄
remains insulating. All doped charge goes to sector σ,
which becomes metallic, with a well-defined Fermi sur-
face, and we recover the spin-valley half-metal with an
incommensurate SDW.

If xσ > x∗, then ∂2F ic
0 (xσ)/∂x

2
σ > 0, and the total free

energy F ic
0 (xσ)+F

ic
0 (x−xσ) acquires a local minimum at

x↑ = x↓ = x/2 (see Fig. 2). When doping increases even
further, this minimum becomes a global minimum for
x ∼= 1.8NF∆0. Consequently, the first-order transition
from incommensurate spin-valley half-metal to common
incommensurate SDW phase occurs at this point.

We assume that both the electron and hole sheets in
the Fermi surface are perfectly nested at zero doping.
Generally, the sheets have non-identical shapes, causing
finite de-nesting. For example, one sheet may be spher-
ical, while the other may be elliptical [23]. At moderate
de-nesting the range of doping where ∂2F ic

0 (x)/∂x2 < 0
diminishes [23]. When the sheets shapes differ signifi-
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cantly, one has ∂2F ic
0 (x)/∂x2 > 0 for all x, and the half-

metal states become impossible. On the other hand, if
the sheets are non-spherical, but the zero-doping nest-
ing is preserved (at x = 0 the sheets are identical), our
conclusions endure, and only minor mathematical modi-
fications to the formalism (the density of states acquires
dependence on the spherical angles) are required. We
also neglected several other perturbations (disorder, spin-
orbit coupling, Umklapp processes). The stability of the
half-metal phases against these should be checked in the
future.

To conclude, we demonstrated that doping a SDW
state with perfectly-nested Fermi surface sheets stabi-
lizes a half-metal-like ground state. Depending on mi-
croscopic parameters and the external magnetic field,
such ground state could be either a CDW half-metal with
complete spin-polarization of the Fermi surface or spin-
valley half-metal. The Fermi surface of the latter state
is characterized by a perfect polarization in the spin-
valley space. While the CDW half-metal supports purely
spin-polarized currents, which is a natural consequence
of the Fermi surface polarization, the spin-valley half-
metal supports spin-valley-polarized currents. The pro-
posed scheme is a controllable weak-coupling approach to
half-metallicity. The discussed mechanism may be of im-
portance for the current search for non-toxic biologically-
compatible materials with non-trivial electronic proper-
ties.
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