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A defect’s formation energy is a key theoretical quantity that allows the calculation of equilibrium defect

concentrations in solids and aids in identification of defects that control the properties of materials and device

performance, efficiency, and reliability. The theory of formation energies is rigorous only for neutral defects,

but the Coulomb potentials of charged defects require additional ad-hoc numerical procedures. Here we invoke

statistical mechanics to derive a revised theory of charged-defect formation energies, which eliminates the need

for ad-hoc numerical procedures. Calculations become straightforward and transparent. We present calculations

demonstrating the significance of the revised theory for defect formation energies and thermodynamic transition

levels.

Point defects, such as impurities, vacancies, and self-

interstitials, control the properties of materials and are widely

used to engineer custom properties in nanostructures and de-

vices and functionalize two-dimensional materials [1–6]. De-

fects introduce localized levels in the energy gap of semicon-

ductors through which they control device performance, effi-

ciency, and reliability [7]. Native defects such as vacancies,

self-interstitials, and antisite defects often act as unintended

dopants or compensate intentionally introduced dopants [8–

10]. In addition, native defects as well as contaminant impu-

rities limit the efficiency of light-emitting diodes [11], cause

degradation of power devices [7], and play key roles in struc-

tural transformations of two-dimensional materials [12, 13].

First-principles calculations for defects [14] contribute sig-

nificantly to understanding material properties and improving

device performance, efficiency and reliability. A key theo-

retical quantity for a defect is the formation energy for each

charge state, which determines the species concentration un-

der equilibrium conditions [10, 15, 16]. The formation en-

ergies also determine the defect’s thermodynamic transition

energy levels, which are related to the localized eigen levels

in the gap. Even in the absence of equilibrium, defect forma-

tion energies along with the resulting transition levels provide

guidance as to which defects are most likely to form, which

aids in defect identification [7]. More recently, calculations of

cross sections for carrier capture have become possible, aid-

ing in defect identification [11, 17] The emergence of oxide

semiconductors and related heterostructure and superlattice

devices [18] have added renewed emphasis on the need for

reliable calculations of defect properties, as oxygen vacancies

are one of several degrees of freedom that determine struc-

tural, electronic, and magnetic properties [19–22].

In this Letter, we show that the conventional definition of

formation energies for charged defects cannot be reconciled

with statistical mechanics. We demonstrate that this is the

fundamental reason for the well-known difficulties associated

with the long-range Coulomb interactions, which are typically

remedied using ad-hoc numerical procedures. We then use

the principles of statistical mechanics to derive a revised defi-

nition of charged-defect formation energies that naturally and

rigorously eliminates the difficulties. We also report calcula-

tions of formation energies that demonstrate the efficiency and

significance of the revised theory.

We start with a critical overview of the existing theory of

formation energies, which are fundamentally thermodynamic

quantities. As such, they are not, in principle, defined for an

isolated defect in an otherwise infinite crystal. For example,

for neutral vacancies in a monatomic crystal such as Si, one

envisions creating large numbers of well-separated neutral va-

cancies. The removed atoms are placed on the surfaces, ex-

tending the bulk crystal, which serves as the reservoir that de-

fines the chemical potential µSi = EN/N for Si atoms. The

resulting formula for the formation energy is,

Eform
0 = (EN−1

0 + µSi)− EN , (1)

where the superscripts on the right indicate the number of

atoms in the supercell. In calculation, the supercell plays the

role of the average volume per vacancy. A converged calcula-

tion means that the well-separated limit is achieved and cor-

responds to a single vacancy in an otherwise perfect crystal

(limit of infinite supercell. The first formation-energy calcu-

lations were in fact done in this limit [23].

For charged defects, the standard theory places a charged

defect in a supercell, assuming that the extra or missing elec-

tron(s) come from or go to an electron reservoir with chemical

potential µe that is equated with the Fermi energy [10, 15],

Eform
q (µe) = (EN−1

q + µSi + qµe)− EN , (2)

where q is the vacancy charge in units of an electron charge.

This definition, however, has a serious inherent difficulty: The

Coulomb interactions of an infinite periodic array of charged

defects introduce a divergence. This divergence is usually

removed by a uniform compensating charge (“jellium”) [24]

or by compensating charges at the supercell boundary [25].

The jellium model, however, only removes the divergence,

but does not change the local electrostatic potential, i.e., the
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Coulombic tails remain intact. As a result, convergence with

respect to supercell size is very slow if not impossible, for

both the atomic relaxations and the values of the formation

energies [24]. These uncertainties are particularly large for

complex oxides [19–22, 26]. Several competing schemes have

been proposed and debated to deal with the convergence issue

[25, 27–31]. A review has been given by Komsa et al. [32].

A comprehensive study of defects in ZnO [26] illustrates the

difficulties of dealing with charged states.

Equation (2), however, is merely an Ansatz, a generaliza-

tion of Eq. (1) that cannot be derived from or reconciled with

the principles of statistical mechanics. More specifically, the

statistical definition of formation energies of neutral vacan-

cies, which underlies Eq. (1), cannot be applied to charged

vacancies: One cannot envision a process where large num-

bers of well-separated charged vacancies are created, leaving

the crystal supercharged. Furthermore, in Eq. (2), the nature

of the electron reservoir is not transparent as there are no en-

ergy states at the Fermi energy. We conclude that the charged-

defect formation energy is not that of a charged defect in an

otherwise infinite crystal, as assumed by the standard theory.

We shall construct a revised, rigorous theory of charged-

defect formation energies using statistical mechanics, moti-

vated by the following considerations. A crystal containing

charged defects is in fact electrically neutral. Physically, in

the absence of dopants, defects become charged by trading

electrons with the energy bands, not with the abstract Fermi

energy, where there exist no energy levels. Thus, the aver-

age volume per defect, which corresponds to a supercell, is

always neutral in one of three ways: it contains a) a nominally

neutral defect, b) a nominally positively-charged defect plus

one or more electrons in the conduction bands, normalized

in the supercell, or c) a nominally negatively-charged defect

plus one or more holes in the valence bands, again normal-

ized in the supercell. We conclude that the supercell for a

charged defect should be made neutral not by an artificial uni-

form compensating background, but by placing compensating

free carrier(s) in the pertinent energy bands. Both the diver-

gence and the lack of convergence caused by Coulomb tails in

the standard theory are eliminated at a fundamental level.

We will now formulate the above as a rigorous mathemat-

ical theory. The statistical definition of the formation energy

Eform
q is the average energy cost per charged vacancy to cre-

ate a large number NV
q of isolated charged vacancies. For

positively-charged defects (q > 0), with q in units of an elec-

tron charge, NV
q q electrons are removed from defect levels

and placed in the energy bands; for negatively-charged defects

(q < 0), NV
q q electrons are removed from the energy bands

and placed in defect levels. Statistical mechanics applied to a

large solid tells us that the creation of charged defects alters

the neutrality condition, which leads to a change δµe to the

Fermi energy and a concomitant change δf(E) to the Fermi-

Dirac distribution function f(E) = 1/[1+ e(E−µe)/kBT ]. We

then have ∫
∞

−∞

g(E)δf(E)dE = NV
q q (3)

and ∫
∞

−∞

Eg(E)δf(E)dE = NV
q qµe (4)

where g(E) is the density of band states, assumed to remain

undisturbed. These equations demonstrate that the energy

bands are the physical electron reservoir and why the Fermi

energy serves as the electron chemical potential even though

the electrons are not physically there. Instead, the NV
q q elec-

trons are physically in the energy bands and, on average, en-

sure that the nominal volume per vacancy is neutral. It is

then evident that it is best to place the “missing” electron(s)

of a positively-charged defect at the bottom of the conduc-

tion bands. In principle, one could place an electron high in

the conduction bands or place two electrons in the conduction

bands and one hole in the valence bands and do a statistical

average, but such configurations would contribute minimally

to the partition function and can be neglected.

We conclude that, for q > 0, Eq. (2) must be replaced by

Ẽform
q (µe) = ẼN−1

q + q(µe − Ec) + µSi − EN . (5)

Here ẼN−1
q is the supercell total energy in the naturally neu-

tral supercell as just desscribed. The term q(µe −Ec) reflects

the fact that ionized electrons are placed at the bottom of the

conduction band only for the purpose of providing the correct

screening of the charged defect, while statistically their energy

should be counted as if they are placed at the Fermi energy as

per Eq. (4). The band gap error in a density functional theory

(DFT) calculation is cancelled out between ẼN−1
q and qEc.

A similar expression holds for q < 0:

Ẽform
q (µe) = ẼN−1

q + q(µe − Ev) + µSi − EN . (6)

Here the extra electron(s) are compensated by hole(s) at the

top of the valence bands.

Both Eqs. (5) and (6) hold if the crystal contains only va-

cancies. If dopants are present, the supercell must contain one

or more dopant atoms, well-separated from the vacancy. For

each charge state, one must calculate the formation energy us-

ing a neutral supercell with compensating electrons or holes in

either a dopant level or the pertinent energy band and carry out

a statistical average. A generalization of the above equations

is straightforward. Such calculations, however, require large

supercells that are currently impractical. The effect of dopants

on the formation energies can be neglectd, except for their role

in the determination of the Fermi energy [33, 34]. Finally, a

generalization of the above equations to a compound semi-

conductor and other defects is straightforward. For example,

for an AB compound, for the formation of a A-vacancy, µSi in

the above equations is replaced by µA, which is not uniquely

determined as discussed in Refs. 10 and 15 and elsewhere (see

also below where the theory is applied to vacancies in ZnO).
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In the new scheme of calculating formation energies in nat-

urally neutral supercells, the average volume per defect cor-

responds to the total concentration of all charge states. It is

this average volume that corresponds to the supercell used for

calculations of the formation energy of each charge state as

described in the present paper. Nevertheless, we are gener-

ally interested in the dilute limit, when the concentration of

charged defects, e.g., vacancies, is given by

NV
q = Nsolidgqe

−Eform
q /kBT , (7)

where Nsolid is the number of pertinent lattice sites in the solid

and gq is the electronic degeneracy of the defect [the degener-

acy factor is usually omitted; a derivation of Eq. (7) is given

in Supplementary Information]. In this limit, one must use a

large enough supercell so that the defects in neighboring su-

percells do not interact, i.e., one must converge the calculation

of formation energies with repect to supercell size.

The naturally neutral supercells for charged defect states in

the present theory eliminate in principle the problems intro-

duced by the Coulomb interactions of charged defects in the

conventional approach. The rate of convergence of course al-

ways depends on the particular defect and host. When the

supercell is small, a Burstein-Moss-like increase in the band

gap may be present, but the effect disappears if the calculation

is converged with respect to supercell size.

We now present results for a vacancy in Si, which has

served as a prototype system [24, 35, 36]. A vacancy in Si

introduces four dangling bonds that hybridize and form an s-

like state within the valence bands and three p-like deep levels

in the energy gap[37]. Two electrons occupy gap states when

the vacancy is neutral. Four charged states, ++, +, −, and

−− are possible. Calculations have been carried out using the

plane-wave-based DFT package Quantum Espresso [38] with

the Perdew-Burke-Ernzerhof (PBE) [39] form of generalized-

gradient approximation (GGA) exchange-correlation poten-

tial and the ultrasoft pseudopotential [40]. Supercells con-

taining 64-, 216-, and 512-atom are used, each of which has

one vacancy. Norm-conserving pseudopotentials are used. As

our purpose here is not necessarily to perform the most ac-

curate calculations, but to compare the conventional and new

method for calculating charged-defect formation energies, we

used only the Γ point to approximate the k-point sum over

the Brillouin zone. The energy cutoff for the plane waves is

50 Ry. The Fermi energy is set to be at the valence band top.

The relaxed structures have the same symmetry as found in

Ref. 35. The calculations for charged defects proceed pre-

cisely as in the case of neutral defects, except that electrons

in the conduction band or holes in the valence are introduced

by “constrained DFT” as implemented in Quantum Espresso

[38] and VASP [41, 42].

Figure 1 shows the formation energy for each charge state

as a function of supercell size. We include the values for neu-

tral vacancies for completeness, even though the theory for

them remains unchanged. The results obtained by the conven-

tional approach shown in Fig. 1 do not include any Madelung

or finite-supercell corrections in order to highlight the differ-

ence in screening by band electrons/holes, which makes the

supercell truly neutral, and the conventional uniform back-

ground (“jellium”), which leaves the Coulombic tails intact

because no physical electron or hole is introduced in the su-

percell. As expected, the difference between conventional cal-

culations (dashed lines) and the present theory (solid lines),

carried out at the same level of accuracy, increases with the

charge on the vacancy site, especially for negative charge

states. The “negative-U” effect [43, 44], which manifests as

a much smaller difference between the formation energies of

the neutral and the V+ states, is reproduced. For the largest

supercell (512 atoms) this energy difference is 0.08 eV.
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FIG. 1. Formation energies as functions of supercell size for different

charge states. Solid lines are calculations using the present theory

(screening by band electrons); dashed lines are calculations using

the conventional approach based on a compensating uniform charged

background (“jellium”)

The necessity of replacing the conventional approach with

the revised theory is more vividly demonstrated in the calcu-

lation of the formation energies of oxygen vacancies in ZnO.

Defects in ZnO were investigated extensively using the con-

ventional method by Oba et al. [26], who tested different

exchange-correlation functionals and finite-supercell correc-

tion schemes. At the PBE level of DFT, the energy gap is very

small compared with the experimental value, whereby the cal-

culation of defect energy levels is not very meaningful. Using

a hybrid functional, on the other hand, Oba et al. find that

the oxygen vacancy is a negative-U center, i.e., the formation

energy of the neutral vacancy with two electrons in the gap is

lower than the formation energy of the +1 charged vacancy.

As a result, the +1 charge state would not form under equilib-

rium conditions for any position of the Fermi energy. The cal-

culated formation energy of the V++state, however, including

finite-supercell corrections, is highly negative, −3.5 eV.

We have performed calculations for the oxygen vacancy

in ZnO as follows. Both the lattice structural relaxation and

the defect formation energies are calculated using the HSE06

functional as implemented in VASP [41, 42], which mixes the

PBE exchange part with 37.5% of Hartree-Fock exchange in



4

short range to match the experiment band gap. The HSE06

calculation was performed using 520 eV cutoff and only the

Γ point for a 9.86 Å× 11.38 Å× 10.61 Å supercell contain-

ing 96 atoms. The Projector Augmented Wave (PAW) method

[45] was used. The formation energies were calculated for

various charge states under oxygen poor (or zinc rich) con-

dition, in which the chemical potential for Zn is given by its

bulk Zn value µZn[bulk], and the chemical potential for oxy-

gen reaches its lowest value µO = E[ZnO] − µZn[bulk] [46].

Compared to the conventional jellium approach, the present

method using screening by electrons in the conduction band

leads to significantly reduced atomic displacements near the

vacancy site, which is consistent with the fact that the screen-

ing by two electrons in the conduction band significantly re-

duces the total perturbation. Specifically, in a perfect wurtzite

crystal, there are two Zn-Zn nearest-neighbor interatomic dis-

tances, 3.17 Å and 3.19 Å. Consider the +2 charge state for

which the difference between the two methods is the greatest.

In the jellium model, the Zn-Zn distances at the O vacancy

site are 4.10 Å and 4.15 Å, respectively, while the present the-

ory yields 3.60 Å and 3.64 Å. Also, the two methods lead

to large differences in the vacancy formation energies for the

+2 charge state, −2.3 eV compared with −3.65 eV (the lat-

ter number is obtained at our level of accuracy and compares

well with the numerically more accurate value −3.5 reported

by Oba et al.). The formation energies for the three charged

states 0, +1, and +2 using the present method are 0.69 eV,

−0.77 eV, and −2.30 eV, respectively, as shown in Fig. 2,

compared with 0.93 eV, −1.30 eV, and −3.65 eV using the

conventional approach. It is notable that, as seen in Fig. 2, the

two transition levels almost collapse into a single level near

Ev + 1.5 eV. The effective Hubbard U is essentially zero.
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FIG. 2. Formation energy of oxygen vacancy in ZnO under oxygen-

poor conditions. The +2/0 transition occurs at 1.5 eV above the

valence band maximum.

In addition to the large differences in formation energies

between the conventional and new theories, there is one more

notable feature that distinguishes the new theory. A neutral

defect has localized states in the band gap that correspond

to eigenvalues ǫd of the pertinent one-electron Hamiltonian.

These levels shift slightly with changing occupations so they

are properly designated as ǫdq . The thermodynamic transition

levels, on the other hand, correspond to the positions Ed
q/0 of

the Fermi energy where Eform
q (µe) and Eform

0 (µe) are equal.

Since the dependene of Eform
q on µe is linear as in Eqs. (5)-

(6), the q/0 transition level is given by

qµe = Eform
0 (0)− Eform

q (0) = ẼN−1
0 − ẼN−1

q . (8)

At low temperatures approaching 0 K, the transition level

Ed
q/0 for positive q values must be below the unoccupied de-

fect energy level ǫdq . Otherwise we may have the paradoxical

situation where the Fermi energy is above a mostly unoccu-

pied defect level when the charge-q state is energetically fa-

vored over the neutral state. This condition provides a physi-

cal constraint on the formation energies,

Eform
q (0)− Eform

0 (0) > −qǫdq . (9)

A similar constraint can be derived for negative q values.

For ZnO, using the conventional jellium screening we find

ǫd+2 = 2.13 eV for the lowest unoccupied defect level of the

+2 charge state. Thus the physical constraint for the for-

mation energies is Eform
+2 (0) − Eform

0 (0) > −4.26 eV. Ev-

idently, the conventionally calculated formation energies of

Eform
0 (0) = 0.93 eV and Eform

+2 (0) = −3.65 eV violate this

condition. On the other hand, with ǫd+2 = 1.59 eV calculated

using the new theory, we get Eform
+2 (0) − Eform

0 (0) > −3.18
eV, so Eq. (9) is satisfied by Eform

0 (0) = 0.69 eV and

Eform
+2 (0) = −2.30 eV for the new theory.

In summary, we have shown that difficulties introduced by

Coulombic potentials in the standard theory of charged-defect

formation energies, which are remedied by ad-hoc numeri-

cal procedures, can be overcome by reformulating the theory

using rigorous statistical mechanics. We then demonstrated

that supercells containing charged defects are neutral because

the “missing” electrons are physically in the conduction bands

and “extra” electrons are compensated by holes in the valence

bands. Thus, long-range Coulombic potentials are inherently

absent. We reported calculations showing that the numeri-

cal results are significantly different in the two approaches.

We expect that significant differences would persist if one

were to push both calculations to convergence with respect

to supercell size. If the supercell size is small, the errors of

the two methods arise from different sources. The conven-

tional method leaves the Coulomb tail intact whereas the new

method confines the band electron in an unphysically small

volume to keep the supercell neutral. Fully converged calcu-

lations are not always practical and the question of corrections

to unconverged calculations is too complex to address here.

Nevertheless, anchored on rigorous statistical mechanics, the

new theory places calculations of charged-defect properties on

a more solid footing.
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[45] P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).

[46] A. Janotti and C. G. Van de Walle, Phys. Status Solidi B 248,

799 (2011).


