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Gábor B. Halász,1 Brent Perreault,2 and Natalia B. Perkins2

1Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA
2School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA

We propose that resonant inelastic X-ray scattering (RIXS) is an effective probe of the fractionalized excita-
tions in three-dimensional (3D) Kitaev spin liquids. While the non-spin-conserving RIXS responses are domi-
nated by the gauge-flux excitations and reproduce the inelastic-neutron-scattering response, the spin-conserving
(SC) RIXS response picks up the Majorana-fermion excitations and detects whether they are gapless at Weyl
points, nodal lines, or Fermi surfaces. As a signature of symmetry fractionalization, the SC RIXS response is
suppressed around the Γ point. On a technical level, we calculate the exact SC RIXS responses of the Kitaev
models on the hyperhoneycomb, stripyhoneycomb, hyperhexagon, and hyperoctagon lattices, arguing that our
main results also apply to generic 3D Kitaev spin liquids beyond these exactly solvable models.

Quantum spin liquids (QSLs) are exotic and entirely quan-
tum phases of matter [1, 2] hosting a remarkable set of emer-
gent phenomena, including long-range entanglement, topo-
logical ground-state degeneracy, and fractionalized anyonic
excitations. The Kitaev spin liquid (KSL) on the honeycomb
lattice [3] and its generalizations on tricoordinated three-
dimensional (3D) lattices [4–8] are quintessential examples of
such QSL phases. Importantly, recent years have seen much
progress in identifying a large number of candidate materials
for realizing these KSL phases [9–12], such as the honeycomb
iridates Na2IrO3 [13–18] and α-Li2IrO3 [19], the honeycomb
ruthenium chloride α-RuCl3 [20–26], and the 3D harmonic-
honeycomb iridates β- and γ-Li2IrO3 [27–30].

From a theoretical point of view, KSLs are particularly ap-
pealing because each of them has an exactly solvable limit
governed by a Kitaev model [3]. In general, the Kitaev model
is defined on a tricoordinated lattice with S = 1/2 spins σx,y,zr

at the sites r, which are coupled to their neighbors via bond-
dependent Ising interactions. The Hamiltonian reads

H = −Jx
∑
〈r,r′〉x

σxrσ
x
r′ − Jy

∑
〈r,r′〉y

σyrσ
y
r′ − Jz

∑
〈r,r′〉z

σzrσ
z
r′ ,

(1)
where Jx,y,z are the coupling constants for the three types of
bonds x, y, and z. Remarkably, this model is exactly solvable
whenever there is precisely one bond of each type around each
site of the tricoordinated lattice.

These exactly solvable Kitaev models have been defined on
a wide range of tricoordinated 3D lattices [4–8], including the
hyperhoneycomb, stripyhoneycomb, hyperhexagon, and hy-
peroctagon lattices (see Fig. 1). In the experimentally relevant
isotropic regime (Jx ≈ Jy ≈ Jz), the ground state is a gapless
Z2 QSL, while the (fractionalized) excitations are gapless Ma-
jorana fermions and gapped Z2 gauge fluxes. Importantly, the
Majorana fermions (spinons) exhibit a rich variety of nodal
structures due to the different (projective) ways symmetries
can act on them [5–7]. Indeed, they are gapless along nodal
lines for the hyperhoneycomb and the stripyhoneycomb mod-
els [4], on Fermi surfaces for the hyperoctagon model [5], and
at Weyl points for the hyperhexagon model [7].

From an experimental point of view, however, it is diffi-
cult to identify and characterize QSLs due to the lack of any

local order parameters that could be used as ”smoking-gun”
signatures. In recent years, a remarkable theoretical and ex-
perimental progress has been achieved in understanding that
fractionalization is one of the most promising hallmarks of a
QSL. Indeed, it has been demonstrated that fractionalized ex-
citations, which are Majorana fermions and Z2 gauge fluxes
for KSLs, can be probed by conventional spectroscopic tech-
niques, such as inelastic neutron scattering (INS) [26, 31–34],
Raman scattering with visible light [21, 25, 35–39], and reso-
nant inelastic X-ray scattering (RIXS) [40–42].

In this Letter, we propose that RIXS is an effective probe
of the spinon (semi)metals realized in 3D KSLs. Calculating
the exact RIXS responses of four different 3D Kitaev models
(see lattices in Fig. 1), we demonstrate that nodal lines, Weyl
points, and Fermi surfaces of Majorana fermions leave distinct
characteristic fingerprints in the spin-conserving (SC) RIXS
response. For the hyperhoneycomb and the stripyhoneycomb
models, corresponding to β- and γ-Li2IrO3, the SC RIXS re-
sponse is gapless within particular high-symmetry planes but
not at a generic point of the Brillouin zone. In contrast, for
the hyperhexagon model, it is gapless at particular points only,
while for the hyperoctagon model, it is gapless in almost the
entire Brillouin zone. Also, the SC RIXS response is found to
be strongly suppressed around the Γ point for all four models
as a result of symmetries acting projectively on the Majorana
fermions. We argue that our results apply to generic KSLs and
not only to the pure Kitaev models.

General RIXS formalism.—Motivated by the available can-
didate materials (β- and γ-Li2IrO3), we calculate the RIXS
responses for the L3 edge of the Ir4+ ion which is in the 5d5

configuration [43, 44]. However, our results are also expected
to be valid for other RIXS edges and for other potential d5

candidate materials [42]. During RIXS, an incoming photon
is absorbed and excites a 2p core electron into the 5d valence
shell, which then decays back into the 2p core hole and emits
an outgoing photon [45]. The low-energy physics of the 5d va-
lence shell at each Ir4+ ion is governed by a J = 1/2 Kramers
doublet in the t2g orbitals, and we assume that the low-energy
Hamiltonian acting on these Kramers doublets is the Kitaev
Hamiltonian in Eq. (1). In terms of the corresponding Kitaev
model, the 5d6 configuration in the intermediate state is then
described as a non-magnetic vacancy [46–49].
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FIG. 1: Tricoordinated 3D lattices of the Kitaev models considered in this work: (a) hyperhoneycomb, (b) stripyhoneycomb, (c) hyperhexagon,
and (d) hyperoctagon lattices. Different bond types x, y, and z are marked by red, green, and blue, respectively.

The initial and the final states of RIXS are |0〉 ⊗ |Q, ε〉 and
|m〉 ⊗ |Q′, ε′〉, respectively, where |0〉 is the ground state of
the Kitaev model, |m〉 is a generic eigenstate with energy Em
with respect to |0〉, while Q (Q′) is the momentum and ε (ε′)
is the polarization of the incoming (outgoing) photon. During
RIXS, an energy ω = c {|Q|− |Q′|} = Em and a momentum
q = Q − Q′ is transferred from the scattered photon to the
KSL. Summing over all final states |m〉, the total RIXS in-
tensity is then I(ω,q) =

∑
m |A(m,q)|2 δ(ω − Em), where

A(m,q) are the individual RIXS amplitudes.
Since RIXS has four fundamental channels [42], each RIXS

amplitude takes the formA(m,q) =
∑
η PηAη(m,q), where

Pη are polarization factors depending on ε and ε′ [43], while
Aη(m,q) are single-channel RIXS amplitudes corresponding
to the four fundamental channels. In the SC channel labeled
by η = 0, the spin of the 5d valence shell does not change
during RIXS, while in the three non-spin-conserving (NSC)
channels labeled by η = x, y, z, the same spin is rotated by π
around the x, y, z axes, respectively.

The single-channel RIXS amplitudes Aη(m,q) are given
by the Kramers−Heisenberg formula [45]. In the experimen-
tally relevant fast-collision regime, where the core-hole decay
rate Γ is much larger than the Kitaev coupling constants Jx,y,z
(e.g., for the iridates: Γ/Jx,y,z ∼ 100) [50, 51], these RIXS
amplitudes take the lowest-order form [42]

Aη(m,q) ∝
∑
r

eiq·r〈m|σηr
[
1− iH̃(r)

Γ

]
|0〉 (2)

=
∑
r

eiq·r〈m|σηr
[
1− i

Γ

∑
κ=x,y,z

Jκσ
κ
r σ

κ
κ(r)

]
|0〉,

where H̃(r) = H +
∑
κ Jκσ

κ
r σ

κ
κ(r) is the Hamiltonian of the

Kitaev model with a single vacancy at site r. The spin at site
r is effectively removed from the model by being decoupled
from its neighbors at sites κ(r) [48]. Note also that σ0

r is the
identity operator and that we demand H|0〉 = 0 by adding a
trivial constant term to H in Eq. (1).

For the NSC channels, the RIXS amplitudes in Eq. (2) re-
duce to spin-polarized INS amplitudes

∑
r e
iq·r〈m|σx,y,zr |0〉

in the limit of Γ → ∞. In the physically relevant regime,
the three NSC RIXS responses thus reproduce the respective
components of the dynamical spin structure factor studied in
Refs. [33] and [34]. Indeed, since the NSC channels involve
flux creation, the corresponding responses exhibit an overall
flux gap and little momentum dispersion [42].

For the SC channel, however, taking the limit of Γ → ∞
in Eq. (2) gives a trivial amplitude

∑
r e
iq·r〈m|0〉 that corre-

sponds to a purely elastic process. The lowest-order inelastic
process is then captured by the second term in Eq. (2), and the
corresponding RIXS amplitude can be calculated via the exact
solution of the Kitaev model [3]. Furthermore, since the SC
channel creates no fluxes, the entire calculation is restricted to
the ground-state flux sector of the model.

Spinon band structures.—As a first step of our calculation,
we describe the fermion (spinon) band structures of the four
Kitaev models. Using the Kitaev fermionization σκr = ibκr cr
with κ = x, y, z, the Hamiltonian in Eq. (1) becomes

H =
∑
κ

∑
〈r,r′〉κ

iJκu
κ
r,r′cr cr′ =

1

2

∑
r,r′

Hr,r′crcr′ , (3)

where uκr,r′ ≡ ibκr b
κ
r′ = ±1 in the ground-state flux sector,

while Hr,r′ = iJκu
κ
r,r′ if r and r′ are neighboring sites con-

nected by a κ bond and Hr,r′ = 0 otherwise. It is known that
the ground state of the hyperhexagon model has a π flux at
each elementary loop [7, 52], while we assume that the ground
states of the remaining three models are flux free. This choice
is consistent with numerical results for the hyperhoneycomb
and the hyperoctagon models [4, 7], while it is merely a sim-
plification for the stripyhoneycomb model [53].

The quadratic fermion Hamiltonian in Eq. (3) can be di-
agonalized via a standard procedure. Since the lattice of each
Kitaev model has n sites per unit cell (ν = 1, 2, . . . , n), the re-
sulting band structure has n fermion bands (µ = 1, 2, . . . , n),
where n = 4 for the hyperhoneycomb and the hyperoctagon
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models, n = 6 for the hyperhexagon model, and n = 8 for
the stripyhoneycomb model. For a lattice of N unit cells, the
fermion with band index µ and momentum k takes the form

ψ†k,µ =
1√
2N

n∑
ν=1

(
Wk

)
νµ

∑
r∈ν

cr e
ik·r, (4)

while the corresponding fermion energy is εk,µ = 2(Ek)µµ,
where Ĥk =Wk ·Ek ·W

†
k is the (unitary) eigendecomposition

of the Hermitian matrix Ĥk with elements

(Ĥk)νν′ =
1

N

∑
r∈ν

∑
r′∈ν′

Hr,r′ e
ik·(r′−r). (5)

Note that only the fermions ψ†k,µ with energies εk,µ > 0 are
physical due to the particle-hole redundancy Ĥ−k = −Ĥ∗k
which implies ψ−k,µ = ψ†k,µ and ε−k,µ = −εk,µ. In terms of
these fermions, the Hamiltonian in Eq. (3) is then

H =
∑
k

n∑
µ=1

εk,µ

[
ψ†k,µψk,µ −

1

2

]
Θ(εk,µ), (6)

where the Heaviside step function Θ(x) =
∫ x
−∞ dx̃ δ(x̃) re-

stricts the sum to physical fermions.
At the isotropic point (Jx,y,z = J0) of each Kitaev model,

there are gapless nodes in the band structure characterized by
εk,µ = 0. The structure of these nodes is determined by how
inversion and time-reversal symmetries act on the fermions
ψ†k,µ [5–7]. If time reversal is supplemented with a momen-
tum shift k→ k+k0, the fermions are gapless at Weyl points
in the presence of inversion symmetry (hyperhexagon model)
and on Fermi surfaces in the absence of inversion symmetry
(hyperoctagon model). If there is no momentum shift associ-
ated with time reversal, the fermions are gapless along nodal
lines (hyper- and stripyhoneycomb models). For each model,
the matrix Ĥk and the band structure εk,µ are presented in the
Supplementary Material (SM) [54].

SC RIXS responses.—We are now ready to calculate the SC
RIXS responses of the four Kitaev models. Concentrating on
the second term of Eq. (2) and using the Kitaev fermioniza-
tion, the lowest-order SC RIXS amplitudes are

A0(m,q) ∝
∑
r,r′

eiq·rHr,r′〈m|crcr′ |0〉. (7)

For the inelastic processes |m〉 6= |0〉, the final state |m〉 con-
tains two fermions ψ†k,µ and ψ†q−k,µ′ with a total momentum
q and a total energy Em = εk,µ + εq−k,µ′ . The lowest-order
SC RIXS intensity of each Kitaev model is then

I0(ω,q) ∝
∑

k,µ,µ′

∣∣(Aq,k)µµ′
∣∣2 δ(ω − εk,µ − εq−k,µ′)

×Θ(εk,µ) Θ(εq−k,µ′), (8)

where the individual amplitudes (Aq,k)µµ′ are derived in the
SM [54] to be appropriate matrix elements of

Aq,k = Ek · W
†
k · W

∗
q−k −W

†
k · W

∗
q−k · Eq−k. (9)

FIG. 2: Lowest-order SC RIXS intensities of isotropic Kitaev models
(Jx,y,z = J0) on the (a) hyperhoneycomb, (b) stripyhoneycomb, (c)
hyperhexagon, and (d) hyperoctagon lattices. In each case, the inten-
sity is plotted along the high-symmetry path depicted in Fig. 3 and is
normalized to be between 0 and 1. The dotted white line indicates a
gap, below which the intensity is exactly zero.

From a computational point of view, the intensity I0(ω,q) is
obtained numerically as a histogram of |(Aq,k)µµ′ |2 in terms
of the final-state energies ω = εk,µ + εq−k,µ′ .

Results and discussion.—At the isotropic point of each Ki-
taev model, the lowest-order SC RIXS response I0(ω,q) is
plotted in Fig. 2 along a high-symmetry path [55] within the
Brillouin zone depicted in Fig. 3. For each model, the lack of
sharp dispersion curves ω(q) indicates the absence of a one-
fermion response, which is forbidden due to the fractional-
ized nature of the fermions. Instead, the SC RIXS response in
the experimental regime is dominated by the two-fermion re-
sponse in Eq. (8), and the overall energy dependence of each
response is thus proportional to the two-fermion joint density
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FIG. 3: High-symmetry paths [55] within the Brillouin zones of the
(a) hyperhoneycomb, (b) stripyhoneycomb, (c) hyperhexagon, and
(d) hyperoctagon lattices.

of states plotted in the SM [54]. Since the fermion bandwidth
is ≈ 6J0, the bandwidth of the response is then ≈ 12J0.

Unlike the INS responses [33, 34] or, equivalently, the NSC
RIXS responses, the SC RIXS responses in Fig. 2 are gap-
less and they have a pronounced momentum dependence. For
each model, the low-energy (gapless) response is determined
by the nodal structure of the fermions. Since the lowest-order
SC RIXS processes create two fermions, the corresponding re-
sponse is gapless at momentum q if there are gapless fermions
at some momenta k1 and k2 such that q = k1 + k2. For the
hyperhexagon model, the fermions are gapless at Weyl points,
and the response is thus only gapless at particular points of the
Brillouin zone. For the hyperhoneycomb and the stripyhon-
eycomb models, the fermions are gapless along a nodal line
within the Γ-X-Y plane, and the response is thus gapless in
most of the Γ-X-Y plane for both models and also in most of
the Z-A-T plane for the hyperhoneycomb model. However, it
is still gapped at a generic point of the Brillouin zone between
these high-symmetry planes. For the hyperoctagon model, the
fermions are gapless on a Fermi surface, and the response is
thus gapless in most of the Brillouin zone.

For each model, the SC RIXS response in Fig. 2 is strongly
suppressed around the Γ point. Indeed, since Ek = −E−k is
diagonal andWk =W∗−k is unitary, (W†k ·W∗q−k)µµ′ = δµµ′

and hence Aq,k is purely diagonal for q = 0. The intensity
I0(ω,0) in Eq. (8) is then zero due to the Heaviside step func-
tions and ε−k,µ = −εk,µ. From a physical point of view, this
suppression of the intensity can be understood for each model
as a destructive interference between scattering processes at
the two sublattices of the bipartite lattice, which in turn arises
because each scattering process creates two fermions and each
fermion involves a phase factor i between the two sublattices
(see the SM [54]). Remarkably, the phase factor i indicates
that the appropriate symmetry exchanging the two sublattices
[56] acts projectively on the fermions as its action on them
squares to −1 instead of +1 [57]. The strong suppression of

the response around the Γ point is thus a further signature of
(symmetry) fractionalization.

For any actual material realizing a KSL phase, the Hamil-
tonian necessarily contains additional terms with respect to
those in Eq. (1). In general, the high-energy response is ro-
bust against such perturbations, even beyond the phase transi-
tion into an ordered phase [26], but the low-energy response
of a generic KSL can be completely different from that of a
pure Kitaev model [58]. Nevertheless, we expect that the low-
energy features of each SC RIXS response in Fig. 2 are valid
for a generic point of the corresponding KSL phase as the low-
energy physics is still governed by gapless (dressed) fermions
with a particular nodal structure protected by the (projective)
symmetries of the system [5–7]. In particular, for the hyper-
honeycomb and the stripyhoneycomb KSLs, the nodal line re-
mains within the Γ-X-Y plane as long as the two-fold rotation
symmetry around any z bond is intact [59]. The suppression
of the response around the Γ point is also expected to be a
robust feature of each KSL phase as it occurs due to the par-
ticular way the symmetries fractionalize when acting on the
fermions. In fact, it should be present for any KSL on a bipar-
tite lattice, including the honeycomb KSL [42].

Summary.—Calculating the exact RIXS responses of four
3D Kitaev models, we have demonstrated that RIXS is a sen-
sitive probe of the fractionalized excitations in 3D KSLs. In
its NSC channels, RIXS measures the dynamical spin struc-
ture factor, while in its SC channel, it gives a complementary
response, picking up exclusively the Majorana fermions. By
looking at where the SC RIXS response is gapless, one can
distinguish between the various nodal structures of Majorana
fermions possible in 3D KSLs. Conversely, the suppression
of the response around the Γ point is expected to be a generic
signature of all KSLs on a bipartite lattice.
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